Tail bounds for the joint distribution of the surplus prior to and at ruin

Georgios Psarrakos and Konstadinos Politis
Department of Statistics and Insurance Science
University of Piraeus, Greece

Abstract

Keywords: Ruin probability, Time of ruin, Surplus process, Deficit at ruin, Defective renewal equation.

We consider the classical risk model where claims Y_1, Y_2, \ldots arrive in a compound Poisson process with rate λ. The claims are independent identically distributed non-negative random variables and have common distribution function P with finite mean μ. In the case where P has a density, we denote this density by p. We further assume that the claims are independent of the claim-arrivals process. Premiums are paid to the insurer continuously at a rate c per unit time. The surplus of the insurer at time t is then $U(t) = u + ct - \sum_{k=1}^{N_t} Y_i$, where u is the initial surplus and N_t is the number of claims until t. We assume throughout that $c > \lambda \mu$, so that ruin is not certain to occur. Moreover, we write $c = (1 + \theta) \lambda \mu$, where θ is the relative security loading. Let T denote the time of ruin, i.e. the time that the surplus becomes negative for the first time and note that T is a defective random variable. The probability of ruin is then defined by

$$\psi(u) = P(T < \infty | U(0) = u).$$ (1)

The tail for the joint distribution of the surplus prior to and at ruin is defined by

$$H(u, x, y) = P(U(T) > x, |U(T)| > y, T < \infty | U(0) = u).$$ (2)

For $x = 0$ in (2), we define

$$\overline{H}(u, y) = P(|U(T)| > y, T < \infty | U(0) = u),$$ (3)

which is the tail of the defective distribution of the deficit at ruin, while for $x = y = 0$ in (2) we recover the probability of ruin $\psi(u)$. The main purpose of the present paper is to obtain new, lower and upper, bounds for the function $H(u, x, y)$ in (2). Let P_e be the equilibrium distribution associated with the claim size distribution P, defined for $x \geq 0$ by $P_e(x) = \mu^{-1} \int_0^x \bar{P}(t) dt$. Here, and in the following, $\overline{P}(x) = 1 - P(x)$ denotes the tail of a distribution. Define also $H(u) = 1 - \psi(u)$ to be the probability of non-ruin starting with a capital u. First we note the following, which gives an exact representation for $\overline{H}(u, x, y)$ in the case $u > x$.

Proposition 1. For $u > x$ and $y \geq 0$, it holds that

$$\overline{H}(u, x, y) = \frac{\phi}{1 - \phi} \left(\int_0^{u-x} \overline{P}_e(u + y - z) dH(z) + \overline{P}_e(x + y) [\psi(u - x) - \psi(u)] \right) + \phi \overline{P}_e(u + y).$$ (4)
In the sequel, we obtain better lower and upper bounds for the function \(\overline{H}(u, x, y) \) is given by

\[
\overline{H}(u, x, y) \leq \frac{\phi}{1 - \phi} \left(\frac{1}{1} \overline{F}_e(x + y)[\phi - \psi(u)] + \phi \overline{F}_e(u + y) \right).
\]

while a lower bound is

\[
\overline{H}(u, x, y) \geq \frac{\phi}{1 - \phi} \left(\overline{F}_e(u + y)[1 - \psi(u - x)] + \overline{F}_e(x + y)[\psi(u - x) - \psi(u)] \right).
\]

In the sequel, we obtain better lower and upper bounds for the function \(\overline{H}(u, x, y) \) using numerical methods based on a partition interval \((0, u - x]\). Denote \(d_n = (u - x)/n \).

Theorem 1. For \(u > x \) and \(y \geq 0 \), it holds that

\[
\overline{H}(u, x, y) \leq \frac{\phi}{1 - \phi} \left\{ \sum_{k=1}^{n} \left(\overline{F}_e(u + y - k d_n) - \overline{F}_e(u + y - (k - 1) d_n) \right) \int_{(k-1)d_n}^{kd_n} \psi(z) \, dz
- \overline{F}_e(x + y) \psi(u - x) + \overline{F}_e(u + y) \right\},
\]

where

\[
z_{k,n} = \frac{(u - x)[k p_e(u + y - k d_n) - (k - 1)p_e(u + y - (k - 1) d_n)]/n}{p_e(u + y - k d_n) - p_e(u + y - (k - 1) d_n)}
- \frac{\overline{F}_e(u + y - k d_n) - \overline{F}_e(u + y - (k - 1) d_n)}{p_e(u + y - k d_n) - p_e(u + y - (k - 1) d_n)}
\]

for \(k = 1, 2, \ldots, n, \) and \(z_{0,n} = 0, z_{n+1,n} = u - x \).

Theorem 2. For \(u > x \) and \(y \geq 0 \), it holds that

\[
\overline{H}(u, x, y) \geq \frac{\phi}{1 - \phi} \left\{ \sum_{k=1}^{n+1} p_e(u + y - (k - 1) d_n) \int_{z_{k-1,n}}^{z_{k,n}} \psi(z) \, dz
- \overline{F}_e(x + y) \psi(u) + \overline{F}_e(u + y) \right\},
\]

where

\[
C_{k,n}(u, x, y) : = \overline{F}_e(u + y - k d_n) - \overline{F}_e(u + y - (k - 1) d_n)
- d_n p_e(u + y - (k - 1) d_n) \geq 0 .
\]
For appropriate values of x and y, the above three theorems yield the following bounds for $\psi(u)$.

Proposition 3. Let $U(u)$ be a function such that $\psi(u) \leq U(u)$ for all $u > 0$. Then for all such u, it holds that

$$
\psi(u) \leq \phi \frac{n}{u} \sum_{k=1}^{n} \left(\mathbb{P}(u - k \frac{u}{n}) - \mathbb{P}(u - (k - 1) \frac{u}{n}) \right)
\times \int_{(k-1) \frac{u}{n}}^{k \frac{u}{n}} U(z) \, dz + \phi \mathbb{P}(u).
$$

Proposition 4. Let $L(u)$ be such that $\psi(u) \geq L(u)$ for $u > 0$. Then for any $n = 1, 2, \ldots$, it holds that

$$
\psi(u) \geq \phi \sum_{k=1}^{n+1} p_e \left(u - (k - 1) \frac{u}{n} \right) \int_{z_{k-1,n}}^{z_{k,n}} L(z) \, dH(z) + \phi \mathbb{P}(u).
$$

Proposition 5. Let $L(u)$ be such that $\psi(u) \geq L(u)$ for $u > 0$. Then for any $n = 1, 2, \ldots$, it follows that

$$
\psi(u) \geq \phi \sum_{k=1}^{n} p_e \left(u - (k - 1) \frac{u}{n} \right) \int_{(k-1) \frac{u}{n}}^{k \frac{u}{n}} L(z) \, dz + \phi \sum_{k=1}^{n} C_{k,n}(u) L(k \frac{u}{n}) + \phi \mathbb{P}(u) \frac{1}{1 - \phi C_{n,n}(u)}.
$$

Our result are illustrated by several examples even in the case where ψ is not known.

References

