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Abstract

One of the most important tasks in actuarial science is to describe the actual but
unknown mortality pattern of a population. In order to achieve this, the actuary calcu-
lates from raw data the crude mortality rates, which usually form an irregular series.
Because of this, it is common to revise the initial estimates with the aim of producing
smoother estimates, with a procedure called graduation. There are several paramet-
ric and non-parametric methods to achieve this. In this paper initially we critically
review the method of graduation using information theoretic ideas. Starting with
Brockett’s idea to use the Kullback - Leibler divergence (Brockett, 1991) we explore
the use of a family of divergence indices - the family of power divergence statistics
(Read and Cressie, 1998) - with analogous linear and/or quadratic constraints with
the aim of finding the best divergence to use in order to obtain the “best” graduation.
“Bestness” is defined as an acceptable level of both smoothness and goodness of
fit. The results so far indicate that divergences with non-probability vectors in their
arguments, as is the case with mortality rates, share, under some conditions, some
of the properties of probabilistic or information theoretic divergences. The power
divergence statistics also give results equivalent to those that other frequently used
graduation methods give. A numerical investigation did not produce the best value
or best values of �, the power of the divergence statistic, for best graduation. The
topic is under further investigation.

Keywords. Graduation, Information theory, Kullback-Leibler divergence, Cressie-Read
divergence

1 Introduction

In order to describe the actual but unknown mortality pattern of a population, the actu-
ary calculates from raw data the crude mortality rates, which usually form an irregular
series. Because of this, it is common to revise the initial estimates with the aim of pro-
ducing smoother estimates, with a procedure called graduation. Graduation has two basic
characteristics: smoothness, which corresponds to the sum of the third derivatives of the
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graduated values at � � �� �� ���� �, and goodness of fit to the observed data (London,
1985 and Benjamin and Pollard, 1992). These two characteristics are in competition and
in order to achieve one of them we have to sacrifice the other. Smoothness is usually

measured by � �
����
���

������
�, where �� are the graduated values and �� are the initial

(crude) values of the “entity” to be graduated. Goodness of fit (fidelity) is measured by

� �
��

���

����� � ���
� where �� are weights. As weights the reciprocals of the variance

of 	�’s are usually used, where 	� is the random variable that corresponds to the initial
estimates ��, � � �� �� ���� �.

There are lots of methods through which graduation can be obtained and they are ba-
sically classified into parametric and nonparametric ones. Through parametric methods
one or more parametric models are fit to the initial estimates and so the graduated rates
are calculated. In nonparametric methods, data are combined at different values of the age
and with appropriate techniques the graduated values are obtained. The methods that fall
under the parametric category are methods based on mortality models, generalized linear
models, splines and smooth - junction interpolation. The existing nonparametric methods
are the graphical ones, weighted moving averages, the Whittaker and Henderson method,
the kernel method, graduation with reference to standard mortality rates and graduation
using information theoretic ideas. Brockett (1991) minimize the Kullback - Leibler di-
vergence subject to mathematical and actuarial constraints in order to obtain a series of
values - the graduated ones - that are the least indistinguishable from the initial estimates.

A question that arises is which is the best method for graduation of actuarial data?
There is no an explicit answer in bibliography. It is in the actuary’s ease which method to
use. However, there are some factors which can guide him to his decision. Among them
are how smooth the graduated values should be, the range and form of actuarial data, the
selection of parameters being displayed in the methods.

In this paper we explore the use of divergences as tools of graduation. In Section 2 we
critically review the method of graduation using the Kullback - Leibler divergence. Since
in graduation the divergence is between non - probability vectors, as a by product, we
study the properties of the Kullback - Leibler divergence for non - probability vectors in
the light of statistical information theory. In Section 3, we explore the use of the family
of power divergence statistics (Read and Cressie, 1988) with the aim of finding the best
divergence to use in order to obtain the “best” graduation. A numerical investigation is
given in Section 4, while Section 5 contains concluding remarks.

2 Information Theoretic Graduation

2.1 Graduation via the Kullback - Leibler divergence

Zhang and Brockett (1987) tried to construct a smooth series of death probabilities ����
which is as close as possible to the observed series ���� and in addition they assumed
that the true but unknown underlying mortality pattern is (i) smooth, (ii) increasing with
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age �, i.e. monotone, (iii) more steeply increasing in higher ages, i.e. convex. They also
assumed that (iv) the number of deaths in the graduated data equals the number of deaths
in the observed data, and (v) the total age of death in the graduated data equals the total
age of death in the observed data. By the term total age of death we mean the sum of the
product of the number of deaths at every age by the corresponding age.

In order to obtain the graduated values, Zhang and Brockett (1987) minimize the Kull-
back - Leibler divergence between the crude death probabilities ���� and the new death
probabilities ����, 
������� �

�
�� ��

��
��

, subject to the constraints (i) - (v) by con-
sidering a dual problem of minimization. So instead of minimizing 
������� subject
to � � � and ����� � �

�
����� � ��� � � �� � 	,  � �� �� ���� �, where �� is a positive

semidefinite matrix for each  and ��, �� are constants, they maximize the dual problem,
which is:

maximize ��� 
��

��
�

��
���

����
�
� �� � ���

��
� �����

�

��
���

�� ����
�

subject to � � � and �� � 	
	� .

Constraints (i) - (v) may easily be written in the form of �����; we see that we have � �
� constraints. Solving the above dual problem, we can easily find the graduated values ���

by using the equality ��������
�
�� � ���, � � �� �� ���� � provided that �� � �

��
���

��� ��
�
� �

�
� �

���. ��� and ��
� are the solution of the dual problem. In this way we obtain the minimum

divergence estimator.

2.2 Kullback - Leibler directed divergence involving non - probabil-
ity vectors

In the discrete case Kullback - Leibler measures of information based on �
�����, is
defined by ����
����� �

�
�

��� ��

�
�

��
�

(Kullback, 1951) and it may be considered as di-

rected divergence. The Kullback - Leibler directed divergence, is defined for probability
vectors and shares some properties that all information measures share. Papaioannou
(1985, 2001) presents in detail the properties of information measures. Namely these are:
nonnegativity, additivity - subadditivity, conditional inequality, maximal information, in-
variance under sufficient transformations, convexity, loss of information, sufficiency in
experiments, appearance in Cramer - Rao inequalities, invariance under parametric trans-
formations, nuisance parameter inequality, order preserving property and asymptotic be-
havior.

However, when we use Kullback - Leibler directed divergence in graduation, we have

mortality rates � and � which are not probability distributions since we have
��

���

�� � �

and
��

���

�� � �. Brockett (1991) states “that 
������� �
��

���

�� ��
��
��

is still a measure

of fit even in the non - probability situation because the mortality rates are non - negative
and because of the assumed constraints” .
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In the sequel we investigate whether the Kullback - Leibler directed divergence between
two non - probability vectors can be considered as a measure of information. This is done
by examining its properties in the light of general properties of measures of information
and divergence.

Definition 1. The Kullback - Leibler directed divergence between two �� � non - prob-
ability vectors 
 and �, is defined by


���
��� �
��
���

�� ��
��
��

where
��
���

�� �� � and
��
���

�� �� �.

Lemma 1. For the Kullback - Leibler directed divergence with non - probability vectors,
it holds that


���
��� �

�
��
���

��

��
����
����� � �� �

	
�

where � �
��
���

���
��
���

��, and ����
����� is the Kullback - Leibler measure involving

probability vectors 
� and ��, where the elements of 
� and �� are the normalized ele-

ments of 
 and �, i.e. ��� � ���
��
���

�� and ��� � ���
��
���

��,  � �� ���� �.

Proposition 1. (The nonnegativity property)


���
��� � 	� (1)

if one of the following conditions holds:

��
��
���

�� �
��
���

��� ��
��
���

�� �
��
���

�� ��� �� � � �����
������

Equality in (1) holds if 
 � � or �� � � �����
�����. Moreover if
��
���

�� �
��
���

�� then


���
��� � 	 if and only if 
 � �.

Note that 
���
��� � 	 does not necessarily imply 
 � � unless
��
���

�� �
��
���

��. The

(directed) divergence 
���
��� used by Brockett is not a proper divergence as it was
explained before.

Definition 1 has obvious extensions to the bivariate and multivariate case. We present
the related definitions for the bivariate case.

Definition 2. (Bivariate Divergence) Let ����� ��,  � �� �, be two bivariate measures
(non - probability functions) associated with two discrete variables� , � in �� for which
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it holds
�
�

�
�

����� �� � �. We define the Kullback - Leibler directed divergence between

two bivariate non - probability functions ��, �� as


��
�� ���� ��� �

�
�

�
�

����� �� ��
����� ��

����� ��
�

Definition 3. (Conditional Divergence) For the discrete variables� , � and the bivariate
non - probability functions ����� ��,  � �� �, as given above let ����� �

�
�

����� ��,

����	�� �

������
�����

, ����� �
�
�

����� ��, and ����	�� �

������
�����

,  � �� �. We set


��
� ������� ��� �

�
�

����	�� ��
����	��

����	��
� 
��

�������� ��� �
�
�

����	�� ��
����	��

����	��

and define


��
� ����� ��� �  

�

��

� ������� ���
	
�
�
�

�����
�
�

����	�� ��
����	��

����	��
�


��
�� ���� ��� �  �

�

��

�������� ���
	
�
�
�

�����
�
�

����	�� ��
����	��

����	��
�

Proposition 2. (Strong Additivity) Let ��, �� be two bivariate non - probability functions
associated with two discrete variables� , � in �� as in Definition 2. Then


��
�� ���� ��� � 
��

 ���� ��� �

��
� ����� ��� � 
��

� ���� ��� �

��
�� ���� ����

where the functions ��, ��, ��, ��,  � �� � are as in Definition 3.

Corollary 1. (i)
��
�� ���� ��� � 


��
 ���� ��� with equality if and only if
��

� ����� ��� �
	;

(ii) 
��
�� ���� ��� � 


��
� ���� ��� with equality if and only if
��

�� ���� ��� � 	;

(iii)
��
�� ���� ��� � 


��
� ����� ��� with equality if and only if
��

 ���� ��� � 	;

(iv) 
��
�� ���� ��� � 


��
�� ���� ��� with equality if and only if 
��

� ���� ��� � 	.

In all above cases equality holds if and only if the normalized values of � , � are
independent.

The normalized values of � , � form two random variables � �, � � with discrete joint
mass probability function ��� ��� �� � ����� ���

�
�

�
�

����� �� and marginal and condi-

tional probability mass functions as follows � �
� � �� , � �	��

� ��� , �
�
� ��� , ��	� �

�

��� . For the random variables��� � � we have

���
��� ������ �

�
�� �

�
�

�
�

������ �� ��
������ ��

������ ��
�
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Proposition 3. (Weak Additivity) If ����	�� � ����� and consequently ����� �� �
����������,  � �� �, we have that the random variables � �, � �, produced by normaliza-
tion of� , � as indicated above, are independent, and it holds that


��
�� ���� ��� � 
��

 ���� ��� �

��
� ���� ���� ! �� "�

where ! �
�
�

����� �
�
�

����� and " �
�
�

������
�
�

����� �
�
�

������
�
�

�����.

It is now easy to see that weak additivity holds if
�
�

����� �
�
�

����� or
�
�

����� ��
�

�����.

Proposition 4. (Maximal Information and Sufficiency) Let � � # ��� be a measurable
transformation of � , then


��
 ���� ��� � 


��
� ���� ����

with equality if and only if � is ”sufficient”, where �� � �����, �� � �����,  � �� �.

Proposition 5. 
���
��� � ����
����� when one of the following conditions holds:

(i)
��
���

�� �
��
���

�� � �, (ii)
��
���

�� �
��
���

�� and
��
���

�� � �, (iii)
��
���

�� �
��
���

�� and
��
���

�� � �.

As expected the Kullback - Leibler directed divergence 
���
��� involving non -
probability vectors 
, �, does not share the properties that the traditional Kullback -
Leibler directed divergence shares. Under some conditions, some of them are satisfied.
More precisely
���
���, is nonnegative, additive, invariant under sufficient transforma-
tions and greater than ����
�����. It also satisfies the property of maximal information.
So, 
���
���, in general terms, can be regarded as a measure of divergence and there-
fore can be used for graduating mortality tables as originally proposed by Brockett and
Zhang (1986).

3 Graduation via the Cressie - Read Power Divergence

Starting with Brockett’s idea of minimizing the Kullback - Leibler divergence in order to
find the best fitting series of graduated ���� values subject to the constraints (i) to (v), in
this section we explore the use of the power divergence index.

Cressie and Read (1984) defined a power divergence between two probability vectors

���� by

���
����� �
�

$�$� ��

��
���

���


�
���
���

��

� �


� (2)

where $ is a real valued parameter. The values at $ � 	��� are defined by continuity.

For $ 
 	, we have ���
����� �
��
���

��� ��

�
�

��
�

, which is the Kullback - Leibler directed
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divergence. The power divergence has the properties of other measures of divergence
such as nonnegativity, symmetry, continuity, nonadditivity and strong nonadditivity. We
note that divergence (2) is a directed divergence (Cressie and Read, 1984).

Cressie and Read (1984) also used the family of power divergence statistics, for good-
ness of fit purposes. If � � ���� ��� ���� ���

� is a random vector of counts following the
multinomial distribution with parameters %�
�, where 
� � ����� �

�
�� ���� �

�
��

� is the vec-

tor of cell probabilities and
��
���

�� � % and
��
���

��� � � and 
� � ������ ��
�
�� ���� ��

�
��

� is the

maximum likelihood estimator of 
� under the &� � 
 � ' , then the family of power
divergence statistics is defined as

����$� �
�

$�$� ��

��
���

��


�
��
�����

��

� �


� (3)

where $ is a real valued parameter, chosen by the user. For the values $ � 	 and $ � ��
the statistic is defined as the limit of ����$� as $
 	 and $
 ��, respectively.

It can be easily seen (Read and Cressie, 1988) that ����$� given by (3) is equal to (i)
the �� statistic for $ � �, (ii) the (� statistic for $ 
 	, (iii) the modified likelihood
ratio statistic for $ 
 ��, (iv) the Freeman - Tukey statistic � � for $ � ������ and (v)
the Neyman - modified �� for $ � ��. As an alternative to the �� and (� statistics,
Cressie and Read (1984) proposed the power divergence statistic with $ � �� which lies
between of them.

3.1 Power directed divergence without probability vectors

We have already mentioned that in the problem of graduation we have not probability
vectors. So we have to define the directed divergence of order $ for non - probability
vectors.

Definition 4. We define as


���
��� �
�

$�$� ��

�
�

��


�
��
��

��

� �


� $ � �

the Cressie - Read directed divergence of order $ between two non - probability vectors

 and �, where

�
�

�� �� � and
�
�

�� �� ��

Now we have to see if this measure has information theoretic and divergence properties.
In the sequel we will assume that $ �� 	 and $ �� ��.

Lemma 2. For the Cressie - Read directed divergence involving non - probability vectors

��, it holds that


���
��� �

��
�

��

�
��
�
����
������

�� ��

��
�

$�$� ��

�
�
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where ����
����� is the Cressie - Read directed divergence between two probability
vectors 
���� and � �

�
�

���
�
�

��.

Proposition 6. (The nonnegativity property)


���
��� � 	�

if one of the following conditions holds:

��
�
�

�� �
�
�

��� ��
�
�

�� �
�
�

�� ��� $ �� ���� 	��

��
�
�

�� �
�
�

�� ��� % � ����
������ ���
�
�

�� �
�
�

�� ��� $ � ���� 	��

���
�
�

�� �
�
�

�� ��� % � ����
������ ��)�) % �
�� ��

��
�

$�$� ��
�

Equality holds if one of the following conditions holds:

���
�
�

�� �
�
�

�� ��� 
 � �� ���
�
�

�� �
�
�

�� *�
�
�

�� �
�
�

�� ���% � ����
������

Proposition 7. 
���
��� � ����
����� when one of the following conditions holds:
(i)
�
�

�� �
�
�

��, (ii)
�
�

�� �
�
�

�� and $ �� ���� 	�, (iii)
�
�

�� �
�
�

�� and $ � ���� 	�.

Equality holds if% � ����
����� independently of the value of $, where% as in Propo-
sition 6.

Definition 5. (Bivariate Divergence) In the framework of Definition 2 we define the
Cressie - Read directed divergence between two bivariate non - probability functions ��,
�� as


��
�� ���� ��� �

�

$�$� ��

�
�

�
�

����� ��


�
����� ��

����� ��

��

� �


�

Definition 6. (Conditional Divergence) In the framework of Definition 3 we set


��
� ������� ��� �

�

$�$� ��

�
�

����	��


�
����	��

����	��

��

� �



and


��
� ����� ��� �  

�

��

� ������� ���
	

�
�

$�$� ��

�
�

�����
�
�

����	��


�
����	��

����	��

��

� �


�

for the variable� , and 
��
�� ���� ��� is defined in an analogous way.
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Proposition 8. (Weak additivity) If ����	�� � ����� and consequently ����� �� �
����������,  � �� �, we have that the random variables� �� � �, which are the ”standard-
ized” values of �� � , are independent, then

���
��
�� ���� ��� � 
��

 ���� ����

��
� ���� ��������"

�$�$������� �� �� � �
�
� ��

��
� � ����� �

�
��

� ����
�
�� "�

�
�

������
, where ���� �

�
�

�
�

����� ��,  � �� ��

���
��
�� ���� ��� � 
��

 ���� ��� � 
��
� ���� ��� if " � � and if one of the marginal

pairs�� �� � �
�
� �� ��

�
�� �

�
�� are identical where " � ���������.

Proposition 9. (Maximal Information and Sufficiency) Let � � # ��� be a measurable
transformation of � , then


��
 ���� ��� � 


��
� ���� ����

when � � �, where � �

��
�

������
�
�

�����

��

, with equality if and only if � is ”suffi-

cient”, where �� � �����, �� � �����,  � �� �.

We have already seen that the power directed divergence 
���
���, under some con-
ditions is nonnegative, additive, greater than ����
����� and invariant under sufficient
transformations. It also shares the property of maximal information. So, we can regard

���
��� as a measure of divergence and therefore use it for graduation purposes.

3.2 Graduation via power divergence

Based on the above we can now apply the power divergence to the problem of actuarial
graduation. In order to obtain the graduated values ��, we minimize the Cressie - Read
divergence


������� �
�

$�$� ��

�
�

��


�
��
��

��

� �



for given $ subject to � � � and ����� � �
�
����� � ��� � � �� � 	,  � �� �� ���� �, where

�� is a positive semidefinite matrix for each  and ��, �� are constants. We have already
mentioned that the constraints (i) - (v) given in Section 2.1 may be written in the form
of ����� with the consequence to have � � � constraints. These constraints represent
smoothness, monotonicity, convexity, equality in the number of deaths and equality in the
total age of death. The minimization is done for various values of the parameter $ and we
choose as the best graduation the one that gives satisfactory results for smoothness and
fit. In this way we can interpret the resulting series of the graduated values, as the series
which satisfy the constraints and is least distinguishable in the sense of the Cressie - Read
directed divergence from the series of the crude values ����.

It is obvious that if we choose $ � 	, we perform graduation through the Kullback -
Leibler directed divergence that Zhang and Brockett (1987) described. In the following
section we provide numerical illustration.
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4 Numerical Investigation

The problem of graduation is to find the best fitting values ��, which satisfy the mathe-
matical and actuarial constraints (i) to (v) and are the least distinguishable from the initial
estimates ��. The above constrained problem can be easily solved by using any of the
readily available non linear programming codes.

For the illustration, we will use four different data sets of death probabilities. The first
data set is the one that Brockett and Zhang (1986) use. We denote this data set by BZ86.
The second one comes from London (1985, p. 162), originally from Miller (1949), and
will be denote it by L85. The third one comes from the Actuarial Society of Hong Kong,
is available on the Internet (www.actuaries.org.hk) refers to males and will be denoted
by HK01M. The last one also comes from the same Society, refers to females and will
be denoted by HK01F. The above-mentioned data sets are of different size. Especially,
the BZ86 data set consists of 15 death probabilities for ages 70 to 84 while the L85 data
set consists of 20 death probabilities belonging to ages 75 to 94. From HK01M we have
used 16 death probabilities for ages 70 to 85 while from HK01F we have taken 20 death
probabilities for ages 70 to 89.

We have performed several graduations for each data set, using different values of the
parameter $ and the constraints of smoothness, monotonicity, convexity and the two ac-
tuarial constraints. Among them are the values �, 	, ��, ������, and ��, which give the
�� statistic, Kullback - Leibler divergence, modified likelihood ratio statistic, Freeman -
Tukey statistic � � and Neyman - modified ��, respectively. We also use the value ��
that Cressie and Read (1984) proposed. We note that the value of+ in the first constraint,
is different in each set, and it is computed through graduation by the Whittaker - Hender-
son method, except for the BZ86 data set where we have used the value that Brockett and
Zhang (1986) use.

It is expected and logical that different choice of the parameter $ leads to different
graduated values. We have already mentioned that the two basic elements of graduation
are smoothness and goodness of fit. So, in order to compare the several graduations for

each data set, we computed, after the graduation, the measure � �
��

���

����� � ���
�,

used by Whittaker - Henderson. We note that as weights we used �� � ��
��������

, where

,� is the number of people at risk in the age �. The measure
����
���

������
� was used for

measuring the smoothness of the graduated values.

The value of the smoothness measure � computed after the Whittaker - Henderson
graduation as well as the average value of smoothness �� taken from several graduations
using power divergences are given in Table 1. It is obvious that both methods give almost
the same value for the smoothness measure �.

In Figure 1, we have plotted the value of the smoothness measure � versus the value of
the parameter $, with � depicted in the �-axis and $ in the �-axis. The blue line in each
plot denotes the value of + in the smoothness constraint. We can see that apart from the
BZ86 data set, the other three follow the same pattern. When �� � $ � ��, � takes
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Data set � via Whittaker-Henderson �� via Power Divergences
BZ86 0.0009 0.0006
L85 0.0000355697 0.0000313201
HK01M 0.0000248294 0.0000215776
HK01F 0.0000148469 0.0000123451

Table 1: Value of smoothness measure

Figure 1: Smoothness � versus $

a value near the value of + . Then, when �� � $ � �	�� � takes a very small value
almost equal to zero and then for the remaining values of $, it also takes a value near the
value of+ . So, for values of $, between�� and�	��, the method oversmooths the data.

In Figure 2, we present the analogous plots concerning the measure of fit � ,with �
in the �-axis and $ in the �-axis. We can also see a same pattern for the L85, HK01M
and HK01F data sets. For values of $ smaller than ��, the measure of fit increases,
till its maximum value. This means that graduation is not acceptable as the graduated
values depart too far from the crude values. When $ takes a value almost equal to ��, �
decreases and it is stabilized for the remaining values of $.

5 Conclusions

Although there are a lot methods of graduation, none of them can be thought as better or
more correct, as they give almost the same results. So it depends on the actuary which
method to use. It also depends on the environment (setting) of the problem, its constraints
and the purpose of graduation.
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Figure 2: Goodness of fit � versus $

After a theoretical evaluation of the Kullback - Leibler
���
��� divergence involving
non - probability vectors, which Brockett and Zhang (1986) use, for purposes of gradua-
tion, we have concluded that this measure shares some of the properties of the Kullback
- Leibler directed divergence ����
�����. Under some conditions, 
���
��� is non-
negative, additive and invariant under sufficient transformations. Thus, we can regard

���
��� as a measure of information, and consequently use it in the problem of grad-
uation.

Furthermore, other divergence measures, such as the power divergence indices, can
be used for graduation. We proved that in the case that it does not involve probability
vectors, it shares some of the properties that the power divergence with probability vectors
shares. More specifically, under some conditions it is nonnegative, additive, greater than
����
����� and invariant under sufficient transformations. So, we can regard
���
���
as a measure of divergence and therefore it can be used in the problem of graduation.

In the numerical illustration, minimizing the power divergence for various values of $
gave equivalent results, in terms of smoothness, to those of other methods of graduation
such as the Whittaker - Henderson method. We can obtain different values for the smooth-
ness index � by changing the value of + in the first constraint. However, we cannot say
which value of the parameter $ is the best for graduation. Values of $ smaller than ��
give unacceptable results as far as goodness of fit is concerned and as such they should be
avoided.
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