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PREFACE

I am very glad to open this volume with the proceedings of the last 5th Samos Conference.

This time the proceedings appear in a separate volume, a fact that represents a new step

to the success of the series of Samos Meetings. These proceedings reflect a small sample

of the insightful discussions and diversified speculations, developed during the thirty four

presentations by participants of the conference and attendants of a short course, given

before the Samos Conference on ”Subexponential Tails in the World of Dependence” by

Qihe Tang.

I have the pleasure to report that during the closing ceremony three prizes for excellence

were bestowed to the following presentations:

1. Optimal Investment Strategy to Minimize the Ruin Probability of an Insurance Com-

pany under Borrowing Constraints by Nora Mler.

2. Longevity Risk in Portfolios of Life Insurance and Annuity Liabilities: the Effect of

Product Design, Product Mix and Portfolio Composition by Ralph Stevens.

3. Optimal ’per claim’ reinsurance for dependent risks by Manuel Guerra.

I must express my thanks to all the factors involved in the preparation of the proceed-

ings of the conference, starting from the authors and scientific committee. I would like to

mention the significant help by Georgios Psarrakos for his work of formatting the material.

I am also extremely grateful to our sponsors: University of the Aegean, Commercial Value,

Samos Steamship Co., Bank of Greece Ministry of Education, Prefectural of Samos and

Municipality of Karlovassi.
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I take this opportunity to invite you to take part to the 6th Samos Conference, which

is to be held on June 3-6, 2010 (website: http://www.actuar.aegean.gr/Samos2010/).

Karlovassi, March 28, 2009.

Dimitrios G. Konstantinides

Chairman of the Organizing Committee
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Figure 1: Photo of the participants during the third day of the conference.
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An extreme value approximation to the integrated tail
distribution

Ants Kaasik
University of Tartu, Estonia
Email: ants.kaasik@ut.ee

Abstract

The idea of approximating the integrated tail distribution of the claim sizes with a Ge-
neralized Pareto distribution is presented in the context of the Cramér-Lunberg insurance risk
model. The foundations of this semi-paramteric approach are analyzed. Simulation results
for subexponential claims clearly show the superiority of the proposed approach over the
empirical approach that makes use of the sample cumulative distribution function.

Keywords.Craḿer-Lundberg model; Generalized Pareto distribution; Integrated tail distribu-
tion; M/G/1 queue; Subexponential distribution.

1 Introduction

In all that follows letX be a heavy-tailed random variable with support on(0,∞) and a cumulative
distribution function (cdf)F (x) such thatµ = EX < ∞. Define an integrated tail distribution
of F by F I(x) =

∫ x
0 (1− F (y))dy/µ and suppose we have an independent random sample from

the distributionF (original data) while we are interested in the upper tail ofF I , i.e., inF I(x) as
F I(x) → 1. The first concern is that we do not have any data from the integrated tail distribution.

To see why this is a realistic case, consider anM/G/1 queue and suppose we wish to estimate
the probability of a steady-state waiting time exceeding some high valueu. This probability can be
expressed in terms of a random sum of independent random variables, that have the integrated tail
distribution of the service time, exceeding the valueu (see p. 237 in [1]). Also the infinite horizon
ruin probability of a company with initial capitalu can be expressed this way (the summands are
then from the integrated tail distribution of the claims distribution) when the Cramér-Lundberg
model is assumed. Thus should we knowF I(x) for everyx > 0, simulation can be used in
the mentioned situations for estimating respectively the probability of a large delay or ruin (see
e.g. [3], [4] for some effective simulation algorithms applicable for these problems). Apart from
simulation also asymptotic approximations could be used, however for the heavy-tailed (subexpo-
nential) case the knowledge of the upper tail ofF I is required (see p. 296 in [1]).

While we don’t have data fromF I , we can use the definition of the integrated tail distribution
and replace the unknown components with their empirical counterparts, i.e. replaceF (x) with
the empirical cumulative distribution function (ecdf)Fn(x) andµ by the sample meanµn. This
approach is used in [8], but, although theoretically justified, the approximation is not very reliable
in the tail region. More precisely, letu be a high threshold. The problem is that usually we do not

1



A. Kaasik - An extreme value approximation to the integrated tail distribution 2

have too many data points in the region(u,∞) and thus also the estimation of the tail ofF I is
problematic because

F̄ I(u) = 1− F I(u) =

∫∞
u F̄ (y)dy

µ
(1)

and in case of using the ecdf apporach clearly

F̄ I
n(u) =

∫∞
u F̄n(y)dy

µn
= 0 (2)

for anyu > x(n), wherex(n) is the sample maximum, thus the approximation is limited to the
range of the sample.

Extreme value theory offers a possible solution to a similar problem. SupposeX is in a domain
of attraction of an extreme value distributionHξ (EV condition) i.e. Fn(anx + bn) → Hξ(x)
for somean > 0, bn (see e.g. pp. 120–123 in [5] for more details). It is known that in our case
ξ ∈ [0, 1) (otherwise either the support ofX could not be(0,∞) or the mean ofX could not be
finite). Define

Fu(y) =
F (u + y)− F (u)

F̄ (u)
, u > 0, y > 0 (3)

the conditional distribution function ofX − u given thatX > u and

Gξ,σ(y) =

1−
(
1 + ξy

σ

)−1/ξ
, ξ 6= 0, σ > 0

1− exp
(
− y

σ

)
, ξ = 0, σ > 0

(4)

the cdf of the generalized Pareto distribution (GPD) where0 < y < −σ/ξ for ξ < 0 and0 < y <
∞ for ξ > 0. A well known result (see e.g. pp. 165–166 in [5]) states that when the EV condition
holds andX has support(0,∞), the GPD is a good approximation ofFu for large values ofu
because

lim
u→∞

sup
x>0

|Fu(x)−Gξ,σ(u)(x)| = 0. (5)

This motivates the following general tail approximation (the EV condition is in nearly all cases
assumed to be satisfied when we are dealing with continuous data and we assume it to be so
throughout the rest of the article). Suppose we have fixed a high thresholdu and our sample with
sizen hasN data points that exceed the threshold. Find the estimatesξ̂N and σ̂N of the GPD
parameters using the exceedances (each havingu subtracted). Then

F̄ (u + y) = F̄ (u)F̄u(y) ≈ N

n

(
1 +

ξ̂Ny

σ̂N

)−1/ξ̂N

. (6)

This approach was introduced and studied in detail in [9] for the case when the GPD parameters
were estimated using the maximum likelihood (ML) method. Another well known general method
for estimating the parameters of the GPD is the method of probability weighted moments (PWM)
studied e.g. in [6]. The aim of this paper is to study the application of this approximation (6)
for estimating the tail ofF I using these two methods of parameter estimation and comparing the
results with the (strictly) empirical approach.

Our approximation idea is straightforward: fix a largeu and estimate the GPD parameters.
Based on (6), we might hope that fory > 0

F̄ I(u + y) ≈ N

µ̂nn

∫ ∞

y

(
1 +

ξ̂Nx

σ̂N

)−1/ξ̂N

dx, (7)
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whereµ̂n is the estimate of the expected value.

2 Main Result

We start this section with some definitions.

Definition 2.1. A positive random variableX with distribution functionF is called subexponen-
tial (we denote this byF ∈ S) if for all n ∈ N it holds that

lim
x→∞

F ∗n(x)
F̄ (x)

= n, (8)

whereF ∗n denotes then-fold convolution ofF .

Definition 2.2. The mean residual lifea(u) of a positive random variableX with distribution
functionF at instantu > 0 is defined as

a(u) =

∫∞
u F̄ (x)dx

F̄ (u)
(9)

Remark2.1. ClassS includes many important heavy-tailed distributions, Pareto, Weibull and log-
normal being the most prominent members.

It is a known fact that if (5) holds for the conditional distribution ofX with ξ ∈ (0, 1), it also
holds for the tail of the integrated tail distribution (with differentξ andσ(u)) (see e.g. [2]). To see
that a similar result also holds for the case whenξ = 0 we note that (5) is based on the fact that

lim
u→∞

sup
x>0

|F̄u(xa(u))− Ḡξ,1(x)| = 0. (10)

Denotefu(x) :=
∫∞
x F̄u(ya(u))dy andg(x) :=

∫∞
x Ḡξ,1(y)dy. The functiong(x) is well defined

as isfu(x) =
∫∞
x [F̄ (u + ya(u))/F̄ (u)]dy =

∫∞
x F̄ (u + ya(u))dy/F̄ (u) ≤ µ/F̄ (u) asµ =∫∞

0 F̄ (y)dy. We have thatfu(x) → g(x) uniformly and

sup
x>0

∣∣∣∣∫ ∞

x
F̄u(y)dy −

∫ ∞

x
Ḡξ,a(u)(y)dy

∣∣∣∣ = o(a(u)). (11)

This is becauseFu(xa(u)) can be dominated by an integrable function and thus dominated con-
vergence applies, hence we havefu(0) → g(0), which thanks to the Scheffe Lemma yields∫ ∞

0

∣∣F̄u(xa(u))− Ḡξ,1(x)
∣∣ dx → 0 (12)

giving the uniform convergence (an analogue of 10). A change of variable in (12) proves (11).
This result is the counterpart of (5) for the integrated tail distribution.

We now proceed to show that when dealing with the integrated tail distribution the tail approx-
imation still behaves like a GPD.

Proposition 2.1. Suppose that∀x > 0 we haveF̄u(x) = Ḡξ,σ(x) for someu > 0. Then∀y > 0

F̄ I(u + y) =
F̄ (u)σ

µ(1− ξ)
Ḡξ∗,σ∗(y), (13)

whereξ∗ = ξ/(1− ξ) andσ∗ = σ/(1− ξ).
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Proof. Writing

F̄ I(u + y) =
F̄ (u)

µ

∫ ∞

y
Ḡξ,σ(x)dx, (14)

the result now follows directly forξ ∈ [0, 1) after integration.

Thus the following methodology suggests itself: fix a largeu and estimate the parameters of
the GPD using theN exceedances yieldinĝξN andσ̂N . Approximate the tail of the integrated tail
distribution with GPD but with parameterŝξN/(1− ξ̂N ) andσ̂N/(1− ξ̂N ), multiplied by the ratio
of Nσ̂N andn(1− ξ̂N )µn.

3 A Simulation Study

Clearly we cannot expect the proposed approximation to give as good results as the GPD model
can give in the ordinary case. However, as we shall see, the approximation still outperforms the
ecdf approach. Even though we have not proven anything (and thus have noa priori knowledge)
about the behaviour of the approximation due to the error in paramter estimation of GPD and the
fact that (5) is only a limit result, we now proceed to estimateF̄ I(u) for large values ofu with the
methodology described in the end of the previous section.
Because the values of̄F (x) are typically rather small for arguments greater than a high threshold,
we study the the supremum relative error of the approximations. LetAemp

n,u be the supremum
relative error of the ecdf approach andAgpd

n,u the counterpart for the GPD approach (7); in both
cases the supremum is overu 6 x 6 x(n). In the role ofF we used either the finite-mean Pareto
distribution whereF̄ (x) = (1 + x)−α andα > 1, the heavy-tailed Weibull distribution where
F̄ (x) = e−xβ

and0 < β < 1, or the log-normal distribution wherēF (x) = Φ̄((lnx)/σ) and
σ > 0, with some fixed values of the parameter. In each case we performed1000 simulations and
estimatedp(n, N) := P(Agpd

n,u < Aemp
n,u ), whereu is such that the expected number of exceedances

is N .

Table 1: Estimates ofp(n, N) for the Pareto case with ML

α n N = 50 N = 100 N = 150 N = 200
1.5 1000 0.698±0.028 0.722±0.028 0.747±0.027 0.761±0.026

10000 0.664±0.029 0.721±0.028 0.729±0.028 0.772±0.026
100000 0.698±0.028 0.712±0.028 0.718±0.028 0.736±0.027

2.5 1000 0.739±0.027 0.767±0.026 0.803±0.025 0.799±0.025
10000 0.728±0.028 0.767±0.026 0.802±0.025 0.780±0.026
100000 0.746±0.027 0.785±0.025 0.777±0.026 0.779±0.026

When the original distribution is Pareto, the integrated tail distribution is also Pareto, moreover
(5) holds not only as a limit result but also for every positiveu. Thus we can expect that the size
of N defines the quality of the GPD approximation. Table 1 confirms this – sample sizen plays
no part asu is shifted to the right with the increase. In Table 2 a small dependence fromn seems
to exist. Surprisingly the approximation quality seems to decrease when the overall sample size
increases when PWM are used. Overall impression is that the GPD outperforms the ecdf approach
and the superiority seems to increase when the tail of the distribution is less heavy or more heavy
respectively for the ML and PWM methods.
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Table 2: Estimates ofp(n, N) for the Pareto case with PWM

α n N = 50 N = 100 N = 150 N = 200
1.5 1000 0.908±0.018 0.927±0.016 0.936±0.015 0.939±0.015

10000 0.904±0.018 0.906±0.018 0.925±0.016 0.911±0.018
100000 0.883±0.020 0.870±0.021 0.892±0.019 0.876±0.020

2.5 1000 0.846±0.022 0.869±0.021 0.905±0.018 0.940±0.015
10000 0.829±0.023 0.816±0.024 0.851±0.022 0.872±0.021
100000 0.808±0.024 0.811±0.024 0.815±0.024 0.832±0.023

Table 3: Estimates ofp(n, N) for the Weibull case with ML

β n N = 50 N = 100 N = 150 N = 200
0.25 1000 0.472±0.031 0.183±0.024 0.050±0.014 0.006±0.005

10000 0.635±0.030 0.483±0.031 0.420±0.031 0.280±0.028
100000 0.646±0.030 0.606±0.030 0.559±0.031 0.523±0.031

0.50 1000 0.680±0.029 0.565±0.031 0.507±0.031 0.377±0.030
10000 0.725±0.028 0.682±0.029 0.641±0.030 0.616±0.030
100000 0.727±0.028 0.728±0.028 0.720±0.028 0.725±0.028

0.75 1000 0.731±0.027 0.712±0.028 0.684±0.029 0.661±0.029
10000 0.734±0.027 0.748±0.027 0.720±0.028 0.740±0.027
100000 0.701±0.028 0.747±0.027 0.729±0.028 0.735±0.027

When the original distribution is Weibull, the integrated tail distribution is connected to a gamma
distribution (see [7]). Simulation results in Table 3 show that whenu is not large enough, the GPD
approximation using ML fails (of course, it is of no surprise as (6) holds only for large threshold
values). However, whenu is set sufficiently high and the number of exceedances is big enough to
properly estimate the parameters, GPD approach once again works better than the one using the
ecdf. Too low threshold hinders the PWM method as well as can be seen from Table 4, however it
clearly outperforms the empirical approach in the current simulation study.

For the log-normal case the GPD approach using ML performs better than the ecdf approach
whenu is not set too low. The difference is once again bigger for lighter tails. The situation is
different when the PWM method is used as the superiority of the extreme value approach is more
evident with heavier tails.

It is worth noting that in practiceu is typically chosen according to the data (see e.g. Section 6.5
in [5]) and not simply as a specific quantile dependent only on the sample size. Thus one would
expect the GPD apporach to perform even better when the data is carefully examined before fixing
the threshold.

4 Conclusion

Estimating the distribution function of an integrated tail distribution from the original data is a
hard task when we have no addtional information. The approach of using GPD approximation in
the tail part remains valid, but does not produce as good results as in the usual context. When using
the method of maximum likelihood for parameter estimation, the approach might fail altogether
whenu is not sufficiently high. For the tail sample sizes ranging from50 to 200 the method of
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Table 4: Estimates ofp(n, N) for the Weibull case with PWM

β n N = 50 N = 100 N = 150 N = 200
0.25 1000 0.783±0.026 0.766±0.026 0.696±0.029 0.597±0.030

10000 0.780±0.026 0.743±0.027 0.724±0.028 0.659±0.029
100000 0.737±0.027 0.712±0.028 0.682±0.029 0.683±0.029

0.50 1000 0.735±0.027 0.732±0.027 0.703±0.028 0.641±0.030
10000 0.741±0.027 0.720±0.028 0.748±0.027 0.718±0.028
100000 0.699±0.028 0.706±0.028 0.697±0.028 0.691±0.029

0.75 1000 0.746±0.027 0.763±0.026 0.777±0.026 0.771±0.026
10000 0.737±0.027 0.759±0.027 0.757±0.027 0.747±0.027
100000 0.701±0.028 0.703±0.028 0.723±0.028 0.701±0.028

Table 5: Estimates ofp(n, N) for the log-normal case with ML

σ n N = 50 N = 100 N = 150 N = 200
1 1000 0.712±0.028 0.692±0.029 0.675±0.029 0.636±0.030

10000 0.726±0.028 0.711±0.028 0.709±0.028 0.710±0.028
100000 0.741±0.027 0.724±0.028 0.730±0.028 0.736±0.027

2 1000 0.547±0.031 0.422±0.031 0.337±0.029 0.219±0.026
10000 0.648±0.030 0.587±0.031 0.577±0.031 0.503±0.031
100000 0.655±0.029 0.623±0.030 0.637±0.030 0.635±0.030

Table 6: Estimates ofp(n, N) for the log-normal case with PWM

σ n N = 50 N = 100 N = 150 N = 200
1 1000 0.783±0.026 0.774±0.026 0.823±0.024 0.817±0.024

10000 0.740±0.028 0.747±0.027 0.764±0.026 0.772±0.026
100000 0.706±0.028 0.732±0.027 0.729±0.028 0.745±0.027

2 1000 0.862±0.021 0.825±0.024 0.820±0.024 0.808±0.024
10000 0.790±0.025 0.818±0.024 0.789±0.025 0.787±0.025
100000 0.803±0.025 0.778±0.026 0.788±0.025 0.780±0.026

probability weighted moments seems to guarantee an improvement over the ecdf approach.
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Abstract

In this paper we consider risk models with a heavy-tailed parametric claim distribution
from the subexponential classS with at least two parameters. We choose a proper convergence
of a parameter, that makes the tail of the claims distribution heavier or lighter and then tend
it to its limitation. Finally we proceed to an appropriate functional normalization in order to
keep the distributional properties.

1 Introduction.

In this paper the following problem is investigated: We consider a heavy-tailed parametric dis-
tribution from the subexponential classS with at least two parameters. We shall demand such a
relation between the parameters, that the safety loading coefficient remains fixed. Choose a proper
convergence of a parameter, that makes the tail of the claims distribution heavier and then tend it
to its limitation. What happens then with the corresponding ruin probability under some special
risk models?

We consider the classical risk model where the claims occur at random epochs which form a
homogeneous Poisson process{N(t) , t ≥ 0} with intensityλ > 0, which is independent of the
claimsZk , k = 1, 2, . . .. Using the notation ofB(x) = 1 − B(x) for the tail of the claim
distriburionB(x), of b(x) for the density and ofb = EZ for the mean claim size, we denote the
expected claim per time unit byρ = λb and the

X(t) =
N(t)∑
k=1

Zk

is the compound Poisson process representing the total claim amount accumulated until timet.
Thus

F (x) =
1
b

∫ x

0
B(z) dz (1)

is the integrated tail of the claim size distribution. In the classical risk model, the Pollaczeck-
Khinchine formula takes the form

ψ(u) =
(
1− ρ

c

) ∞∑
n=0

(ρ
c

)n
F

n∗(u) , (2)

8
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and gives the main tool for calculation of the ruin probability.
If F ∈ S, the following asymptotic formula was found in [3]

ψ(u) ∼ ρ

c− ρ
F (u) =

ρ

(c− ρ) b

∫ ∞

u
B(y)dy , (3)

asu→∞.
The motivation of this problem comes from the following observation. In the vicinities of the

critical values of the parameter, where the ergodicity condition does not hold any more, the ruin
probability jumps to1. The practical importance of this statement is shown through the unexpected
result that the ruin probability on these neighborhoods does not depend any more on the initial
capital. Obviously, this fact opens a new problem of approximation of the ruin probability in these
areas.

Indeed, we often deal in insurance and finance with large claims that are described by heavy-
tailed distributions (Pareto, Lognormal, Weibull, Loggamma, Burr). The known results reveal
only asymptotic behavior of the ruin probabilities. Numerical calculations show that the accuracy
of these asymptotic formulas can be quite low, especially in the range that is relevant for practical
purposes (see for example [6], [10]).

It is worthy of notice the special importance of heavy-tailed distributions, which is increasing
the last years because of occasional appearance of huge claims. The problem consists in proposing
other approximations that work in the area of practically significant values of the corresponding
parameters and variables. To this end, the classification of the distributions describing large claims
is promoted. This approach presents a new classification, since up to now all heavy-tailed distri-
butions were considered as simple members of the subexponential classS.

We concentrate our study on five concrete subexponential parametric families, widely used in
insurance mathematics.

Example 1.1. Pareto:

B(x) =

 1, when x ≤ k,

kα

xα , when x > k,

with α > 1, k > 0;

Example 1.2. Lognormal:

b(x) =
1√

2πσx
exp

{
−(lnx− µ)2

2σ2

}
,

with µ real number andσ > 0;

Example 1.3. Weibull:
B(x) = e−ντ xτ

,

with ν > 0, 0 < τ < 1;

Example 1.4. Loggamma:

b(x) =
αp

Γ(p)
[ln (1 + x)]p−1 (1 + x)−α−1 ,

with α > 0, p > 0;

Example 1.5. Burr:

B(x) =
(

κ

κ+ xr

)α

,

with κ > 0, r > 0, α > 1/r;
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2 The Heuristics.

Firstly let us take the example of the Pareto distribution, in which the parameterα will be con-
sidered as its parameter of heavytailedness. If the other parameterk is fixed andα tends to its
minimal value1 and consequently the expectation of the claim sizes tends to infinity, and the
corresponding ladder height process is not ergodic any more in the limit. In such a case the inte-
grated tail claim distribution from (1) is meaningless and the Pollaczeck-Khinchine formula does
not work. So in order to keep the balance within the chosen convergence ofα, either the safety
loading or in particular the mean claim

b =
αk

α− 1

must be held fixed, which leads to the normalization. As a result of this, we put as our normaliza-
tion condition

b = 1 , (1)

which is common for all the examples listed above. Thus we obtainρ = λ.
In our example of the Pareto distribution the relation (1) implies that the second parameterk

takes the value

k =
α− 1
α

.

It should be noted that this kind of ergodic control is not unique (see [6]).
Now the heavytailedness parameter converges to the limit which demonstrates its most heavily

(superheavy) tailed distribution. Namely, in the example of the Pareto distribution,α tends to its
least value as follows

α −→ 1.

Secondly, repeating these steps for the Lognormal distribution, it follows that the normalization
(1) implies

µ = −σ
2

2
,

and that the value of the heavytailedness parameterσ tends as follows

σ −→∞,

caused by the need to identify the superheavy tailed distribution.
In the next example of the Weibull distribution, this pattern of the normalization (1) renders

ν = Γ
(

1 +
1
τ

)
,

whereΓ(.) denotes the Gamma function. The most heavy tailed distribution arises when the
heavytailedness parameterτ tends to0.

Further, when we consider the Loggamma distribution according to the normalization procedure
(1), we take

α =
21/p

21/p − 1
.
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Now the heavytailedness parameterp tends to0.
Finally, in the case of the Burr distribution the normalization (1) leads to

κ =
(

rΓ(α)
Γ(1/r)Γ(α− 1/r)

)r

. (2)

Whenr is fixed, the parameter of heavytailednessα tends to1/r.

Remark 2.1. If B(x) belongs to the Pareto, Lognormal, Weibull, Loggamma or Burr distribution
family, then for anyx > 0 its tail tends to zero

B(x) → 0, (3)

as the heavytailedness parameter tends to its limit (α → 1, σ → ∞, τ → 0, p → 0, α → 1/r
correspondingly).

Indeed, for the Pareto distribution family, we take:

B(x) ∼ 1
x

(α− 1)α → 0,

asα→ 1 and for anyx > 0.
For the Lognormal distribution family, it holds:

B(x) =
1√
2π

∫ ∞

ln x
σ

+σ
2

exp
[
−y2/2

]
dy → 0,

asσ →∞ and for anyx > 0.
For the Weibull distribution family by using Stirling’s formula it can be found that:

(νx)τ →
[
xΓ
(

1 +
1
τ

)]τ

∼ (
√

2π)τ

(
1
τ

)τ/2 xτ

τe
→∞,

asτ → 0, from which the limit follows immediately.
For the Loggamma distribution family for anyε ∈ (0, x), the following sequence of relations is

true:

B(x) =
1

Γ(p)

∫ ∞

Ap(x)
wp−1e−wdw ≤ 1

Γ(p)

∫ ∞

ln(1+x)
wp−1e−wdw ≤

≤ 1− 1
Γ(p)(1 + ε)

∫ ln(1+x)

0
wp−1dw = 1− lnp(1 + x)

pΓ(p)(1 + ε)
→ ε

1 + ε
,

asp→ 0, where

Ap(x) =
21/p

21/p − 1
ln(x+ 1) .

In the last step we considered the well-known asymptote

Γ (α) ∼ 1
α
, (4)

asα→ 0.
For the Burr distribution family for fixedr the asymptote (4) gives:

κ ∼ rr

(
α− 1

r

)r

→ 0,

asα→ 1/r, from which the limit follows immediately.
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3 Superheavy Subexponential Tails

Lemma 3.1. (Tsitsiashvili-Konstantinides [12])In the classical risk model, ifB(x) belongs to the
Pareto, Lognormal, Weibull, Loggamma or Burr distribution family, then for anyu > 0, the ruin
probability tends to a constant

ψ(u) → ρ

c
,

as the heavytailedness parameter tends to its limit (α → 1, σ → ∞, τ → 0, p → 0, α → 1/r
correspondingly).

Proof. Firstly let us take the Pareto distribution family. According to the results of the Remark
2.1 it follows that for anyε ∈ (0, u) there is a constantα0 > 1 such that

B(ε) ≤ ε

u− ε
,

for any α ∈ (1, α0). So from the Pollaczeck-Khinchine formula (2), the following chain of
inequalities can be taken:

ρ

c
= ψ(0) ≥ ψ(u) ≥ ρ

c
F (u) =

ρ

c

(
1−

∫ ε

0
B(y)dy −

∫ u

ε
B(y)dy

)
≥ ρ

c
[1− ε− (u− ε)B(ε)] ≥ ρ

c
[1− 2ε],

for anyα ∈ (1, α0), which, due to the arbitrariness ofε, gives the desired convergence. Easily we
can verify that the same argument holds for the rest of the distribution families.

We see that the superheavy limit of the claim distribution in Remark 2.1 does not present a
distribution and the superheavy limit of the ruin probability in Lemma 3.1 is not a decreasing
function with respect tou. These deformations of the standard properties of the distribution and
the ruin probability can be explained through an explosive behavior by the convergence to the
limit. To preserve the standard properties in the course of the limit passage we apply a functional
normalization. Namely we take a functional heavytailedness parameter, sayα(u) > 1 , ∀ u ≥ 0
in the first case, such thatα(u) ↓ 1 asu→∞.

Theorem 3.2. If B(x) belongs to the Pareto, Lognormal, Weibull, Loggamma or Burr distribution
families and its heavytailedness parameter tends to its limit in the following way:

α(x) ↓ 1 , [α(x)− 1]x→∞ ,

σ(x) →∞ , σ(y) < 2 y , ∀ y > 0 ,

τ(x) ↓ 0 , y τ(y) > 1 , ∀ y > 0 ,

p(x) ↓ 0 ,

α(x) ↓ 1/r ,
1

r α(x)− 1
= o

(
x1/r

)
,

asx→∞ respectively, then their normalized tails tend to the following limits:

B([α(x)− 1]x) ∼
(

1
xα(x)

)α(x)

,
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B

(
exp

{
σ(x)x− 1

2
σ2(x)

})
∼ 1√

2π

∫ ∞

x
exp

[
−y

2

2

]
dy ,

B

(√
τ(x)
2π

[e x τ(x)]1/τ(x)

)
∼ e−x

B
(
exp

{ x

21/p(x)

(
21/p(x) − 1

)}
− 1
)
∼ 1

Γ[p(x)]

∫ ∞

x
yp(x)−1 e−y dy

B([r α(x)− 1] (x− 1)1/r) ∼
(

1
x

)α(x)

asx→∞. Furthermore, in the classical risk model, the corresponding ruin probabilities tend to
the following limits:

ψ([α(u)− 1]u) ∼ ρ

c− ρ

∫ ∞

u

α(z)− 1 + z α′(z)

(z [α(z)− 1]α(z [α(z)− 1]))α(z [α(z)−1])
dz ,

ψ

(
exp

{
σ(u)u− 1

2
σ2(u)

})
∼

ρ√
2π(c− ρ)

∫ ∞

u

σ(z) + σ′(z)[z − σ(z)]

exp
{
−z σ(z) +

1
2
σ2(z)

}
∫ ∞

exp

(
z σ(z)−

1
2

σ2(z)

) exp
(
−w

2

2

)
dw

 dz ,

ψ

(√
τ(u)
2π

[e τ(u)u]1/τ(u)

)
∼

ρ√
2π(c− ρ)

∫ ∞

u
e
−

√
τ(z)√
2π [e z τ(z)]

2
τ(z) τ ′(z)

{
1

2
√
τ(z)

− e
zτ ′(z) + τ(z)

τ2(z)
log[e z τ(z)]

}
dz ,

ψ
(
exp

{ u

21/p(u)

(
21/p(u) − 1

)}
− 1
)
∼

ρ

c− ρ

∫ ∞

u

(
1− 2−1/p(z)

)
exp

{(
1− 2−1/p(z)

)
z
}

Γ
[
p
(
exp

[(
1− 2−1/p(z)

)
z
]
− 1
)] ∫ ∞

exp[(1−2−1/p(z)) z]−1
wp(exp[(1−2−1/p(z)) z]−1) e−w dw dz ,

ψ
(
[r α(u)− 1] (u− 1)1/r

)
∼ ρ

c− ρ

∫ ∞

u

(
1

[r α(z)− 1] (z − 1)1/r

)α([r α(z)−1] (z−1)1/r)
[r α′(z) (z − 1)1/r] dz ,

asu→∞.
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Proof. Let us start with the case of Pareto claim sizes. We look for such a nomalizing function
f [x, α(x)], that the expressionB(x f [x, α(x)]) remains a distribution after the passage to the limit
x→∞. This means

1. x f [x, α(x)] ↓ 0, asx ↓ 0,

2. x f [x, α(x)] ↑ ∞, asx→∞.

Within this framework, we find that the function

f [x, α(x)] = α(x)− 1 ,

meets the requirements above and serves as candidate for the normalizing function.
Next we fix the value ofα(u) = α > 1 and we shall obtain the following uniform asymptotics

for the ruin probability whenu→∞,

lim
u→∞

sup
α>1

∣∣∣∣∣ ψ(u f [u, α])
ρ

c− ρ
F (u f [u, α])

− 1

∣∣∣∣∣ = lim
u→∞

sup
α>1

∣∣∣∣∣ ψ(u [α− 1])
ρ

c− ρ
F (u [α− 1])

− 1

∣∣∣∣∣ = 0 . (1)

Indeed, as farF (u [α − 1]) represents a subexponential distribution function and
c− ρ

2 c
> 0,

there exists some constantK = K

(
c− ρ

2 c

)
(see for example in [2, Lemma 1.3.5]) such that for

any integerN ≥ 1 we obtain

ψ(u [α− 1]) =
c− ρ

c

N−1∑
n=0

(ρ
c

)n
F

n∗(u [α− 1]) +
c− ρ

c

∞∑
n=N

(ρ
c

)n
F

n∗(u [α− 1])

∼ c− ρ

c

N−1∑
n=0

(ρ
c

)n
nF (u [α− 1]) +

c− ρ

c

∞∑
n=N

(ρ
c

)n
F

n∗(u [α− 1])

≤

[
ρ

c− ρ
−
(

c

c− ρ
+N − 1

) (ρ
c

)N
+
c− ρ

c

∞∑
n=N

K

(
ρ

c

[
1 +

c− ρ

2 c

])n
]
F (u [α− 1])

asu→∞. Therefore, for any realM > 1 we find

lim
u→∞

sup
α∈[M,∞)

∣∣∣∣∣ ψ(u [α− 1])
ρ

c− ρ
F (u [α− 1])

− 1

∣∣∣∣∣ ≤
∣∣∣∣∣
(

1 +N
c− ρ

ρ

)(ρ
c

)N
∣∣∣∣∣+
∣∣∣∣∣ 2K (c− ρ)

ρ

(
c+ ρ

2 c

)N
∣∣∣∣∣ .

Now we take the limit forN →∞ and the limit forM → 1 and we reach the asymptotic relation
(1).

Now we see that the expression1−B(x f [x, α(x)]) = 1−B(x [α(x)−1]) remains distribution
after the passage to the limit becausex [α(x)− 1] →∞ asx→∞ and consequently

ψ(u f [u, α(u)]) ∼ ρ

c− ρ

∫ ∞

u
B(z f [z, α(z)])

(
z
d(f [z, α(z)])

dz
+ f [z, α(z)]

)
dz .
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Further, we continue with the rest cases under the following normalizing functions respectively:

f [x, σ(x)] =
1
x

exp
{
σ(x)x− 1

2
σ2(x)

}
,

f [x, τ(x)] =
1
x

√
τ(x)
2π

[e τ(x)x]1/τ(x) ,

f [x, p(x)] =
1
x

[
exp

{ x

21/p(x)

(
21/p(x) − 1

)}
− 1
]
,

f [x, α(x)] =
1
x

[r α(x)− 1] (x− 1)1/r .

It remains to repeat the uniform convergence and with the substitution, we reach the other ruin
probability formulas.

All the five examples of heavy tailed distributions outlined in the previous statements belong to
the class of subexponential distributionsS. Two members ofS which serve as exceptions to the
Lemma 3.1 are given below.

Example 3.3. The Bektander I distribution with tail

B(x) =
[
1 +

2p
α

ln(1 + x)
]

exp
{
−p ln2(1 + x)− (α+ 1) ln(1 + x)

}
with α > 0, p > 0, x > 0.

Example 3.4. The Bektander II distribution with tail

B(x) =
1

(1 + x)1−p
exp

{
α

p
[1− (1 + x)p]

}
,

with α > 0, p ∈ [0, 1], x > 0.

We consider again the classical risk model. In both cases, the normalization condition (1) gives

α = 1

and the heavytailedness parameter tends to zero

p→ 0.

Let us denoteψ∗(u) the ruin probability in the classical risk model in which the tail of claim is
from the Pareto distribution:P (x) = 1/(1+x)2, for x > 0 (that claim distribution coincides with
the Burr(2,1)).

Theorem 3.5. (Tsitsiashvili-Konstantinides [12])In the classical risk model, ifB(x) belongs to
either Bektander I or Bektander II distribution family, then for anyx > 0, its tail converges inL1

to P (x): ∫ ∞

0
|B(x)− P (x)|dx→ 0,

and for anyu > 0, the ruin probability tends weakly (⇒) to the functionψ∗(u), which represents
the stationary distribution tail of the waiting time in theM/G/1/∞ queuing system with service
time distributionP (x):

ψ(u) ⇒ ψ∗(u),

as the heavytailedness parameter tends to zero:p→ 0.



D.G. Konstantinides - Risk models with extremal subexponentiality 16

Proof. Firstly let us take the example of the Bektander I distribution. Here, for anyT > 0∫ ∞

0

∣∣B(x)− P (x)
∣∣ dx ≤ ∫ T

0

∣∣B(x)− P (x)
∣∣ dx+

∫ ∞

T
P (x)dx+

∫ ∞

T
B(x)dx

≤ T sup
[0,T ]

P (x)
∣∣[1 + 2p ln(1 + x)] exp[−p ln2(1 + x)]− 1

∣∣+ 1
1 + T

+
∫ ∞

T

{
exp[−2 ln(1 + x)] + 2p ln(1 + x) exp

[
−p ln2(1 + x)− 2 ln(1 + x)

]}
dx

≤ T sup
[0,T ]

{∣∣exp
[
−p ln2(1 + x)

]
− 1
∣∣+ 2p ln(1 + x)

}
+ 2

(
1

1 + T
+ (1 + T )e−T

)
.

Further, for anyε > 0 there exists aTε and ap0 > 0 such that for anyp ∈ (0, p0) the last
expression becomes less thanε, so∫ ∞

0

∣∣B(x)− P (x)
∣∣ dx ≤ T sup

[0,T ]

{∣∣exp
[
−p ln2(1 + x)

]
− 1
∣∣+ 2p ln(1 + x)

}
+ ε −→ ε,

asp −→ 0 and thus the convergence inL1 for the Bektander I case is obtained. Similarly for the
Bektander II case, considering the uniform convergence over any finite interval[0, T ]

exp

(
1− ep ln(1+x)

p

)
→ 1

1 + x
,

asp→ 0, the convergence of the claim tail inL1 is confirmed.
In both cases the convergence of the ruin probability can be verified from a well-known result

of the stability theory (see for example [5], [9]). Indeed, in classical risk model the convergence
ofB(x) toP (x) in L1 implies the convergence of the ruin probabilityψ(u) to the functionψ∗(u),
which represents the ruin probability with claim distributionP (x) (or, in other words, it represents
the stationary distribution of the waiting time in theM/G/1/∞ queuing system with service time
distributionP (x)).

Remark 3.6. For the distributions from the five examples of Theorem 3.2, the convergence inL1

does not hold and therefore this argument from the stability theory is not applicable.

Remark 3.7. It is possible to prove that the functionψ∗(u) is continuous and so the weak conver-
gence in Theorem 3.5 can be replaced by the point wise convergence for anyu ≥ 0.

Remark 3.8. In the superheavy tail mode, the numerics become unstable, because the values of
the ruin probability become too small and the precision in calculation of the intergrals fails. This
observation brings up promptly the numerical issue.

4 Light Subexponential Tails

Now our interest is directed on subexponential distributions that are lying in close vicinity to
the light-tailed distributions. We begin with the Pareto distribution in which the parameterα is
chosen as before for the role of heavytailedness parameter. Obviously, when it tends to its limit
∞ we reach the lightest distribution tail. In the second case with the Lognormal distribution, the
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heavytailedness parameterσ has to tend to0 in order to find the lightest tail. Next in the example
related with the Weibull case, the heavytailedness parameterτ tends to1. Further, in the example
of the Loggamma distribution, the heavytailedness parameterp tends to∞. In the last case with
the Burr distribution, the two-dimensional heavytailedness parameter(α, r) tends to(∞,∞). For
the Bektander I, distribution the heavytailedness parameterp tends to∞. Finally, in the example
with Bektander II distribution, the heavytailedness parameterp tends to1.

We proceed to the limit distributions.

Lemma 4.1. If B(x) belongs to one of the distribution families: Pareto, Lognormal, Weibull,
Loggamma, Burr or Bektander II then its tail tends to a limit distribution:

B(x) → D(x), (1)

as the corresponding heavytailedness parameter reaches its limit (α → ∞, σ → 0, τ → 1,
p→∞, (α, r) → (∞,∞) andp→ 1 respectively). Namely in the Pareto, Lognormal, Loggamma
and Burr cases, the limit distributionD(x) represents a step function:

D(x) =


1, 0 ≤ x < 1,

C, x = 1,

0, 1 < x <∞,

for some constantC ∈ (0, 1), in the Weibull and Bektander II cases it represents an exponential
distribution:

D(x) = e−x .

Furthermore in the Pareto, Lognormal, Weibull, Loggamma, Burr and Bektander II cases, theL1

convergence holds: ∫ ∞

0

∣∣B(y)−D(y)
∣∣ dy → 0.

Proof. For the Pareto distribution family it is easy to find:

B(x) =

{
1, 0 ≤ x ≤ 1− 1

α ,

1
xα (1− 1

α)α 1− 1
α < x <∞,

→


1, 0 ≤ x < 1,

e−1, x = 1,

0, 1 < x <∞,

asα→∞. Thus (1) holds withC = e−1.
For the Lognormal distribution family for anyx > 0 holds:

B(x) =
1√
2π

∫ ∞

ln x
σ

+σ
2

exp
{
−y

2

2

}
dy →


1, 0 ≤ x < 1,

1/2, x = 1,

0, 1 < x <∞,

asσ → 0. Here the relation (1) holds withC = 1/2.
For the Weibull distribution family the following limit distribution can be found

B(x) −→ e−x,
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asτ −→ 1, because[Γ (1 + 1/τ)]τ −→ 1.
At the Loggamma distribution family for anyε ∈ (0, x),

B(x) =
1

Γ(p)

∫ ∞

Ap(x)
wp−1e−wdw,

where

Ap(x) =
21/p

21/p − 1
ln(x+ 1) ∼ p

ln (x+ 1)
ln 2

,

asp→∞. Let us take

z =
ln (x+ 1)

ln 2
.

Forx < 1, asz < 1 the asymptote can be found with the help of the Stirling formula

B(x) ∼ 1
Γ(p)

∫ ∞

pz
wp−1e−wdw

≥ 1− 1
Γ(p)

(pz)p−1 e−pzpz ∼ 1−
p
(
ze1−z

)p√
2π (p− 1)

→ 1, (2)

asp → ∞, because the functionwp−1e−w reaches its maximum atw = p − 1 ∼ p and in turn
the functionze1−z reaches its maximum equal to1 at z = 1. Furthermore, this convergence is
uniform with respect tox ∈ [0, 1− ε] for anyε ∈ (0, 1).

Forx > 1, asz > 1 the asymptote can be found similarly

B(x) ∼ 1
Γ(p)

∫ 2p

pz
wp−1e−wdw +

1
Γ(p)

∫ ∞

2p
wp−1e−wdw

≤ 1
Γ(p)

ppe−pz +
2

Γ(p)

∫ ∞

p
[2 (p− 1)]p−1 e−p+1e−udu

∼
p
(
ze1−z

)p
z
√

2π (p− 1)
+

1
(e/2)p

√
2π (p− 1)

→ 0,

as p → ∞, with u = w/2, because the functionwp−1e−w/2 reaches its maximum atw =
2 (p− 1).

Forx = 1 let us take

B(1) ∼ 1
Γ(p)

∫ ∞

p
wp−1e−wdw −→ Cg ,

asp→∞.
For the Burr distribution family for fixedr, it follows from (2) and Stirling’s formula

κ ∼ α

[
r

Γ (1/r)

]r

,

asα→∞, from where

B(x) =
[
1 +

xr

κ

]−α

∼
(

1 +
xr

α

[
1
r

Γ
(

1
r

)]r)−α

→ exp
{
−
[
1
r

Γ
(

1
r

)]r

xr

}
,
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asα→∞. But

[
1
τ

Γ
(

1
τ

)]τ

xτ →


0, 0 ≤ x < 1,

e−γ , x = 1,

∞, 1 < x <∞,

with [
1
τ

Γ
(

1
τ

)]τ

∼
[
1 +

1
τ

Γ′ (1) + o

(
1
τ

)]τ

→ e−γ ,

asτ → ∞, whereγ = 0.5772156649 the Euler’s constant, from where (1) follows withC =
exp (−e−γ)

lim
τ→∞

lim
α→∞

B(x) = lim
τ→∞

exp
{
−
[
1
τ

Γ
(

1
τ

)]τ

xτ

}
=


1, 0 ≤ x < 1,

exp (−e−γ) , x = 1,

0, 1 < x <∞,

(3)

and this convergence is uniform onx ∈ [0, 1− ε] for anyε ∈ (0, 1).
Next we examine the Bektander II distribution. Again from the substitutionα = 1 it follows

the limit

B(x) =
1

(1 + x)1−p
exp

{
1− (1 + x)p

p

}
−→ e−x,

asp→ 1.
Now, for the convergence inL1, let us note that for anyε > 0 and all claim distributionsB∫ ∞

0

∣∣B(y)−D(y)
∣∣ dy = 2

∫ 1

0

[
1−B(y)

]
dy ≤ 2

∫ 1−ε

0

[
1−B(y)

]
dy + 2ε . (4)

This relation gives in the Pareto case∫ ∞

0

∣∣B(y)−D(y)
∣∣ dy = 2

∫ 1

(α−1)/α
dy =

2
α
→ 0,

asα→∞.
In the Lognormal case, for anyε > 0 if we chooseσε > 0 such that∫ 1−ε

0

∫ ln y
σε

+σε
2

−∞
exp

{
−u

2

2

}
du√
2π
dy < ε,

then for everyσ ∈ (0, σε)∫ ∞

0

∣∣B(y)−D(y)
∣∣ dy ≤ 2

∫ 1−ε

0

∫ ln y
σ

+σ
2

−∞
exp

{
−u

2

2

}
du√
2π
dy + 2ε ≤ 4ε,

which gives the convergence inL1 asσ → 0.



D.G. Konstantinides - Risk models with extremal subexponentiality 20

We take the Weibull distribution. Let us see that for anyT > 1 , τ > 1/2∫ ∞

0

∣∣B(y)− e−y
∣∣ dy =

∫ ∞

0
e−y

∣∣∣∣exp
{
−
[
Γ
(

1 +
1
τ

)]τ

yτ + y

}
− 1
∣∣∣∣ dy

≤
(∫ T

0
+
∫ ∞

T

) ∣∣∣∣exp
{
−
[
Γ
(

1 +
1
τ

)]τ

yτ + y

}
− 1
∣∣∣∣ dy

≤ T sup
[0,T ]

∣∣∣∣exp
{
−
[
Γ
(

1 +
1
τ

)]τ

yτ + y

}
− 1
∣∣∣∣+ e−T

+
∫ ∞

T
exp

{
− inf

τ∈[1/2,1]

[
Γ
(

1 +
1
τ

)]τ

y1/2

}
dy .

But ∀ε > 0 there existsTε such that

e−Tε +
∫ ∞

Tε

exp
{
− inf

τ∈[1/2,1]

[
Γ
(

1 +
1
τ

)]τ

y1/2

}
dy <

ε

2
.

As far asyτ → y, uniformly on[0, Tε] and[
Γ
(

1 +
1
τ

)]τ

→ 1 ,

asτ → 1, we can chooseτε ∈ (1/2, 1) such that∀τ ∈ (τε, 1)

sup
[0,Tε]

∣∣∣∣exp
{
−
[
Γ
(

1 +
1
τ

)]τ

yτ + y

}
− 1
∣∣∣∣ < ε

2Tε
,

and therefore ∫ ∞

0

∣∣B(y)− e−y
∣∣ dy < ε .

In the Loggamma case, it follows from the relation (4)∫ ∞

0

∣∣B(y)−D(y)
∣∣ dy ≤ 2

∫ 1−ε

0

[
1− 1

Γ(p)

∫ ∞

Ap(y)
wp−1e−wdw

]
dy + 2ε ≤ 4ε,

asp→∞. In the last inequality we used the uniform convergence on[0, 1− ε] in (2).
Similarly, in the Burr distribution∫ ∞

0

∣∣B(y)−D(y)
∣∣ dy ≤ 2

∫ 1−ε

0

[
1−B(y)

]
dy + 2ε ≤ 4ε,

as(α, r) → (∞,∞) or α→∞, because of the uniform convergence on[0, 1− ε] in (3).
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We examine the Bektander II distribution. Let us notice that for anyT > 0 andp > 1/2∫ ∞

0

∣∣B(y)− e−y
∣∣ dy ≤ ∫ ∞

T

∣∣e−y
∣∣ dy +

∫ ∞

T

∣∣B(y)
∣∣ dy + T sup

0≤y≤T

∣∣B(y)− e−y
∣∣

≤ e−T + exp
{

1− (1 + T )p

p

}

+ T

[
e2
(

1− 1
(1 + T )1−p

)
+ sup

0≤y≤T

[
−1 + exp

{
1− (1 + y)p + py

p

}]]

≤ e−T + exp
{

1− (1 + T )1/2
}

+ T

[
e2
(

1− 1
(1 + T )1−p

)
− 1 + exp {2 [1− (1 + T )p + pT ]}

]
,

where for anyε > 0, Tε can be chosen such that the first two terms in the last sum are less than
ε/2 and there exists apε > 1/2 such that the last term in the sum become less thanε for any
p ∈ (pε, 1). Thus ∫ ∞

0

∣∣B(y)− e−y
∣∣ dy ≤ 2ε,

and the convergence inL1 is proved.
The stability theory with respect toG|G|1|∞ systems, renders the following picture: If we have

as input characteristics the distribution function of the service times (claims distribution function
for our risk model) and as output characteristics the stationary distribution of the waiting times
(ruin probability for our risk model), the stability means that the convergence inL1 of the input
characteristics implies the weak convergence of the output characteristics. If in our cases the
stationary distribution of waiting time is continuous, then the weak convergence is equivalent to
point convergence.

Theorem 4.2. (Kalashnikov [5])In the classical risk model, if the claim size distributionB(x)
belongs to one of the following distribution families: Pareto, Lognormal, Loggamma, Burr, then
the ruin probability tends to limit waiting time distribution tail in theM/D/1 queuing model (see
[11, Th. 2.17], [1, Cor. III.3.6], [4])

ψ(u) → 1−
(
1− ρ

c

) [u]∑
n=0

1
n!

[
−ρ
c

(u− n)
]n
e−

ρ
c
(u−n), 0 ≤ u <∞,

as the corresponding parameter of heaviness reaches its limit (α → ∞, σ → 0, p → ∞ and
(α, r) → (∞,∞) respectively).

If B(x) belongs to Weibull or Bektander II distribution family, the ruin probability tends to the
M/M/1 waiting time distribution:

ψ(u) −→ ρ

c
exp

{
−
(
1− ρ

c

)
u
}
,

asτ → 1 andp→ 1 respectively.
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Proof. The proof in the first case comes from a result in the stability theory of the Lindley
chain as appears in [5, Th.V.5.5] (see also [9, Th.2] or [7, Th.1]). Here the classical risk model is
described as queuing systemG/G/1/∞. The conditions of this theorem are satisfied through the
appropriate choice of the test function in this chain.

For Weibull or Bektander II distributions, the ruin probability convergence follows again from
the result of the stability theory [5, Th.5.3.1 ] (see also [9, Th.2], [7, Th.1] or [8]). The limit of the
ruin probability corresponds to the waiting time distribution inM/M/1 queuing system (see for
example [11, Th.1.15]).

Remark 4.3. We see that ifB(x) belongs to the Bektander I distribution family, then its tail tends
to a limit equal to zero:

B(x) → 0 ,

asp→∞.
Namely, let us make the substitutionα = 1. Then we take

B(x) =
1 + 2p ln(1 + x)

(1 + x)2
exp[−p ln2(1 + x)] −→ 0,

asp→∞.
Hence in classical risk model, if the claim size distributionB(x) belongs to one of the Bektander

I distribution family, the ruin probability tends toρc :

ψ(u) → ρ

c
,

asp→∞.
Indeed, for the Bektander I distribution we see that for anyε ∈ (0, u) there is a constantp0 > 1

such that

B(ε) ≤ ε

u− ε
,

for anyp > p0. So, from Pollaczeck-Khinchine formula (2) the following chain of inequalities
can be taken:

ρ

c
= ψ(0) ≥ ψ(u) ≥ ρ

c
F (u) =

ρ

c

(
1−

∫ ε

0
B(y)dy −

∫ u

ε
B(y)dy

)
≥ ρ

c
[1− ε− (u− ε)B(ε)] ≥ ρ

c
[1− 2ε],

for anyp > p0.

We see in this remark that the lighter limit of the Bektander I claim distribution does not rep-
resent a distribution and the lighter limit of the ruin probability is not a decreasing function with
respect tou. These deformations of the standard properties of the distribution function and the
ruin probability expresses a tail explosion through the convergence to the limit. As we have done
in the previous section we proceed to a functional normalization. Namely we take a functional
heavytailedness parameterp(u) > 1 , ∀u ≥ 0, such thatp(u) →∞ asu→∞.
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Theorem 4.4. If B(x) belongs to the Bektander I distribution family with its heavytailedness
parameterp(x) →∞, then the normalized tail tend to the following limit:

B

(
exp

{√
x

p(x)

}
− 1
)
∼ (1 + 2

√
x p(x)) exp

{
−x− 2

√
x

p(x)

}
,

asx→∞. Further, in the classical risk model, the ruin probability tends to the following limit:

ψ

(
exp

{√
u

p(u)

}
− 1
)
∼ ρ

c− ρ

∫ ∞

u

√
z p(z) + 2 z p(z)

2 p(z)

(
1
z
− p′(z)
p(z)

)
exp

{
−z −

√
z

p(z)

}
dz .

asu→∞.

Proof. Indeed, again from the relation (2) and the property of the subexponentiality we find

ψ(u) ∼ ρ

c− ρ
F (u) =

ρ

c− ρ

∫ ∞

u
B(y)dy .

Now we look for a normalizing function in the formf(x, p(x)), for which the expression1 −
B(x f(x, p(x))) remains distribution after the passage to the limit:

ψ(u f(u, p(u))) ∼ ρ

c− ρ

∫ ∞

u f(u,p(u))
B(y) dy

∼ ρ

c− ρ

∫ ∞

u
B(z f(z, p(z)))

(
d[f(z, p(z))]

dz
z + f(z, p(z))

)
dz .

Namely, we find the following normalizing function:

f(x, p(x)) =
1
x

(
exp

{√
x

p(x)

}
− 1
)
.

And after the substitution we reach the ruin probability

ψ

(
exp

{√
u

p(u)

}
− 1
)

∼ ρ

c− ρ

∫ ∞

u
(1 + 2

√
z p(z)) exp

{
−z − 2

√
z

p(z)

}
1

2
√
p(z)

(
1√
z
− p′(z)

√
z

p(z)

)
exp

{√
z

p(z)

}
dz .

from where we find our result.
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INTRODUCTION

Let {X,Xi, i ≥ 1} be i.i.d.r.v with common distribution function (d.f.)F (x) and characteris-
tic function (ch.f.)ϕ(t), EX = m if E|X| <∞, V ar(X) = 1 if E|X|2 <∞.

Assume that{Z,Zi, i ≥ 1} is another sequence of i.i.d.r.v. independent of{Xi, i ≥ 1} with
d.f. F1(x) and ch.f.ϕ1(t), EZ = 1/λ, 0 < λ <∞ if E|Z| <∞, V ar(Z) = τ2 if E|Z|2 <∞.
Put

S(n) =
n∑

i=1

Xi, Z(n) =
n∑

i=1

Zi, (1)

whereS(0) = 0, S(x) = S([x]), Z(0) = 0, Z(x) = Z([x]) and[a] is entire ofa > 0.

Define the renewal counting process as

N(t) = inf{x ≥ 0 : Z(x) > t} (2)

and consider the randomly stopped sum process (i.e. the superposition of random processesS(n)
andN(t))

D(t) = S(N(t)) =
N(t)∑
i=1

Xi, (3)

where renewal processN(t) is defined by (2).

The main task of this paper is to study the asymptotic behavior of the random processesD(t)
andN(t) under various assumptions onF (x) andF1(x) with emphasis on the heavy-tailed cases.
This problem has a deep relation with investigations of asymptotics of risk processU(T ) in Sparre
Anderssen collective risk model

U(t) = u+ ct−
N(t)∑
i=1

Xi, (4)

where: u ≥ 0 denotes the initial capital;c > 0 stands for the premium income rate; i.i.d.r.v
{Xi, i ≥ 1} are interpreted as claim sizes;N(t) describes the claim arrival process and stands for
the number of claims until timet; {Zi, i ≥ 1} being the inter-arrival times.

25
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In such modelS(N(t)) is interpreted as total claim amount process and is a stochastic part of
risk process.

Limit theorems for risk process such as (weak) invariance principle, which constitute the weak
convergence ofU(t) to the Wiener processW (t) with the drift (whenEX2 <∞, EZ2 <∞) or
to theα-stable Ĺevy processYα(t), lead to useful approximations of the ruin probability

ψ(u) = P{inf
t>0

U(t) < 0}. (5)

Thus, in the caseEX2 < ∞, EZ2 < ∞ one obtains the “diffusion approximation” forψ(u) as
a distribution of infimum of the Wiener process ( Iglehart (1969), Grandell (1991)), in the case
EX2 = ∞, EZ2 < ∞ the ruin probabilityψ(u) is approximated by the distribution of infimum
of the correspondingα-stable process ( Furrur, Michna and Weron (1997), Furrur (1998)).

Here we deal with the other type of limit theorems, so called strong invariance principle, which
is in certain sense a bridge between weak and strong convergence.

1. STRONG INVARIANCE PRINCIPLE FOR THE PARTIAL SUMS

Strong invariance principle (almost sure approximation)is an umbrella name for the class of
limit theorems which ensure the possibility to construct r.v.{Xi, i ≥ 1} and Ĺevy process{Y (t),
t ≥ 0} on the same probability space in such a way that with probability 1

|S(t)−mt− Y (t)| = o(r(t)) (6)

or
|S(t)−mt− Y (t)| = O(r(t)) (7)

were approximation error (rate)r(.) is a non-random function depending only on assumptions
posed onX.

Additional assumptions onX clear up the type ofY (t) and the form ofr(.). Since we deal
with i.i.d.r.v. it is natural to consider Wiener processW (t) or α-stable Ĺevy processYα(t), t ≥ 0
as an approximation processY (t) in (6), (7). If EX2 < ∞ thenY (t) = W (t) is a Wiener
process.

Note that the complete solution of the problem of a.s.approximation depends not only on the
distribution of r.v. {Xi, i ≥ 1} but also on a structure of the probability space, and (possibly)
requires a “richer” probability space and equivalent r.v.{X ′

i , i ≥ 1}, but for brevity we do not
distinguish between r.v.{Xi} and{X ′

i} as well as their sums.

The origin of this topic goes back to the famous “Skorokhod representation” and “Skorokhod
embedding scheme” ( A.V. Skorokhod (1961)). Skorokhod representation allows one to study a
sequence of values of the Wiener processW (Tn), whereTn, n ≥ 1, are some stopping times,
instead of partial sumsS(n).

Based on Skorokhod embedding scheme V. Strassen (1964,1965) proved the first variant of
the strong invariance principle.

In 1970 – 1995 the further investigations were carried out by a number of authors, among
them Kiefer, M.Cs̈orgő, Révész, Komĺos, Major, Tusnady, Berkes, Horváth ( quantile Hungerian
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method), Stout, Phillip, Berkes ( relationship between the strong invariance principle and conver-
gence in Prokho rov metrics), Horváth ( inverse processes)

For wide references see M.Csörgő and P.Ŕevész (1981); M. Cs̈orgő and L.Horv́ath (1993), N.
Zinchenko (2000).

It is obvious that using (6) with appropriate error term one can easily (almost without the
proof) transfer the results about the asymptotic behavior of Lévy processY (t) or its increments
on the rate of growth of partial sums and corresponding increments.

Following theorem [5,6] will serve as a good background for further investigations.

Theorem 1. It is possible to define partial sum process{S(t), t ≥ 0} and a standard Wiener
process{W (t), t ≥ 0} in such a way that a.s.

|S(t)−mt−W (t)| = o(r(t)), (8)

where:

- r(T ) = T 1/p iff E |X|p <∞, p > 2 ;

- r(T ) = (T ln lnT )1/2 iff E |X|2 <∞ ;

- right hand side of (8) isO(lnT ) iff E exp(uX) <∞ for u ∈ (0, u0).

We shall also use concept ofa.s.approximation in a wider senseand say, that a random process
ξ(t) admits the a.s. approximation by the random processη(t), if ξ(t) (or stochastically equivalent
ξ

′
(t)) can be constructed on the rich enough probability space together withη(t), t ≥ 0, in such a

way that a.s.

|ξ(t)− η(t)| = o(r1(t)) ∨O(r1(t)),

wherer1(.) is again a non-random function.

2. STRONG INVARIANCE PRINCIPLE FOR THE SUMS OF R.V. ATTRACTED TO THE STABLE

LAW

Suppose that r.v.{X,Xi, i ≥ 1} are in domain of normal attraction of a stable law with
0 < α < 2, |β| ≤ 1, notation{Xi, i ≥ 1} ∈ DNA(Gα,β). This means that

n−1/α
(
S(n)− an

)
⇒ Gα,β

wherean = nEX = mn if 1 < α < 2, an = 0 if 0 < α < 1 andan = (2/π)β log n if α = 1.

HereGα,β is a stable law with parameters0 < α < 2, |β| ≤ 1 and ch.f.gα,β(u) = exp(K(u))

K(u) = Kα,β(u) = −|u|
(
1− iβ(u/|u|)$(u, α)

)
, (9)

where$(u, α) = tan(πα/2) if 0 < α < 2,α 6= 1,$(u, α) = −(2/π) log |u| if α = 1.
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Now approximating processY (t) = Yα(t) = Yα,β(t), t ≥ 0, is stable Lévy processwith
ch.f.

gα(t;u) = gα,β(t;u) = exp(tKα,β(u)).

It occurs that the fact{X,Xi} ∈ DNA(Gα,β) is not enough to obtain “good” error term in
(6), (7), thus, certain additional assumptions are needed. We formulate them in terms of ch.f. (see
Zinchenko [ 22, 24 - 26], Berkes et al. [2, 3], Mijnheer [16].)

Assumption (C) : there area1 > 0, a2 > 0 andl > α such that for|u| < a1

|f(u)− gα,β(u)| < a2|u|l

wheref(u) is a ch.f. of(X − EX) if 1 < α < 2 and ch.f. ofX if 0 < α ≤ 1.

Theorem 2 [ 22, 24]. Putm = EX for 1 < α < 2 andm = 0 for 0 < α ≤ 1. Under assumption
(C) a.s.

sup
0≤t≤T

∣∣S([t])−mt− Yα,β(t)
∣∣ = O(T 1/α−ρ0), (10)

where

ρ0 = min
(
l − α

80α
,
2− α

2α

)
.

3. STRONG INVARIANCE PRINCIPLE FOR COUNTING(RENEWAL) PROCESSES

LetN(t) be counting renewal process associated with partial sumsZ(n). For applications it
is convenient to suppose thatZi are non-negative (non-zero) r.v.

3.a. Assumptions:EZ2 <∞, EZ = 1/λ > 0.

In the caseτ2 = varZ < ∞ Cs̈orgő, Horv́ach, Steinebach, Aalex, Deheuvels, Mason, van
Zwet, see [1, 3, 4], studied a.s. approximation of the type

|λt−N(t)− τλ3/2W (t)| = o(r(t)) ∨O(r(t)) (12)

They proved that conditions, which provide (12) and corresponding optimal errors, are the
same as forS(n), see Theorem 1.

3.b. Random variables{Zi, i ≥ 1} ∈ DNA(Gα,β) .

In this case we proved
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Theorem 3. If {Zi} satisfy (C) with1 < α < 2, then a.s.∣∣tλ−N(t)− λ1+1/αYα,β(t)
∣∣ = o(r1(t)), (13)

wherer1(t) is any upper function forα-stable Levy process, for instance,r1(t) = t1/α+δ for any
δ > 0.

4. STRONG INVARIANCE PRINCIPLE FOR RANDOMLY STOPPED PROCESSES

Let S(n), N(t), D(t) = S(N(t)) =
∑N(t)

i=1 Xi be as in Introduction,Ez = 1/λ > 0,
EX = m.

Combining the results about strong invariance principle for partial sums and renewal processes
it is possible to obtain a number of results about a.s. approximation of the superposition of the
mentioned processes, i.e. the random sumsD(t). Weak convergence of the superposition of the
processes was in details studied by W. Whitt (2002), D. Silvestrov (2004).

We start with the case when both{X,Xi, i ≥ 1} and{Z,Zi, i ≥ 1} have finite moments of
order grater than 2. Next theorem concerning a.s. approximation of the superposition of the ran-
dom process (not obligatory connected with the partial sums) follows from results due to Csörgő
and Horv́ach (1993).

Let Z∗(t), S∗(t) be two real-valued random processes,N∗ – the inverse ofZ(t) – is defined
by

N∗(t) = inf{x > 0 : Z(x) > t}, 0 ≤ t <∞.

Theorem 4.Suppose that for some constantsm,λ > 0, σ > 0, τ > 0 a.s.

sup
0≤t≤T

∣∣τ−1(Z∗(t)− t/λ)−W1(t)
∣∣ = O(r(T )),

sup
0≤t≤T

∣∣σ−1(S∗(t)−mt)−W2(t)
∣∣ = O(q(T )),

whereW1(t) andW2(t) are independent Wiener processes,q(t) ↑ ∞, q(t)/t ↓ 0, r(t) ↑ ∞ and
r(t)/t ↓ 0 ast→∞, then a.s.∣∣S∗(N∗(t))− (mλ)t− νW (t)

∣∣ =

= O
(
q(t) + r(T ) + log t

)
, ν2 = λσ2 + λ3m2τ2, (14)

whereW (t) is a Wiener process.

Corollary 1. Let{Xi, i ≥ 1} be i.i.d.r.v.,varX1 = σ2 <∞, i.i.d.r.v. {Zi, i ≥ 1} be independent
of {Xi}, 0 < EZ1 < 1/λ, τ2 = varZ1 < ∞. Mentioned r.v. can be constructed on the same
probability space together with Wiener processW (t) in such a way that a.s.

sup
0≤t≤T

|S(N(t))− λmt− νW (t)| = o(r3(T )), (15)
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ν2 = λσ2 + λ3m2τ2,

where:

- r3(T ) = T 1/p, if E |X1|p <∞, E |Z1|p <∞, p > 2;

- r3(T ) = T 1/p, p = min{p1, p2}, if E|X1|p1 <∞, E|Z1|p2 <∞, p1 > 2, p2 > 2;

- r3(T ) = (T ln lnT )1/2, if p = 2;

- right side of (15) isO(lnT ), if E exp(uX1) <∞ andE exp(uZ1) <∞ for all u ∈ (0, uo).

Developing the ideas of Csörgő and Horv́ach , Zinchenko (2007) proved following result

Theorem 5. Let Z∗(t), S∗(t) be two real-valued random processes,N∗ - the inverse ofZ(t).
Suppose that for some constantsm,λ > 0, τ > 0 a.s.

sup
0≤t≤T

∣∣τ−1(Z(t)− t/λ)−W3(t)
∣∣ = O(r(T )),

whereW3(t) is a Wiener process,r(t) ↑ ∞, r(t)/t ↓ 0 ast→∞ and

sup
0≤t≤T

∣∣D(t)−mt− Yα(t)
∣∣ = o(q(T )),

whereYα(t) is α-stable process independent ofW3(t), q(t) ↑ ∞, q(t)/t ↓ 0 as t → ∞, then
∀ε > 0 a.s. ∣∣S(N∗(t))− (mλ)t− (Yα(λt)− (mλτ)W4(λt))

∣∣ =

= o(q(t)) +O
(
r(t) + log t

)
+O

(
(r(t) + (t log log t)1/2)1/(α−ε)

)
,

whereW4(t) is a Wiener process independent ofYα(t).

In the case of partial sum processes, whenN∗(t) = N(t) is counting process,EZ2 <∞,Xi

satisfying (C),q(t) = t1/α−%, % > 0, the worst estimate forr(t) is (t log log t)1/2. These facts
lead to following

Theorem 6.Let {Xi, i ≥ 1} satisfy (C) with1 < α < 2, andEZ2 <∞ then a.s.∣∣S(N(t))−mλt− Yα,β(λt)
∣∣ = o(t1/α−%1)

for some%1 = %1(α, l) > 0.

The same approach provides

Theorem 7.Let {Xi, i ≥ 1} satisfy (C) with1 < α1 < 2, and{Zi} satisfy (C) with1 < α2 < 2,

α1 ≤ α2
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then a.s.

∣∣D(t)−mλt− Yα1,β(λt)
∣∣ = o(t1/α1−%2)

for some%2 = %2(α1, l) > 0.

5. APPLICATION TO RISK MODELS

In the framework of collective risk model

D(T ) =
N(T )∑
i=1

Xi = S(N(T ))

can be interpreted as a total claim amount arising during time interval[0, t], and increments

D(T + aT )−D(T ) =
N(T+aT )∑
i=N(T )+1

Xi

as claim amounts during the time interval[T, T + aT ].

In Section 4 we obtained a number of strong invariance type results for a total claim amount
processD(t) under various moment assumptions on claims and inter-arrival times ( Theorems 4 –
7, Corollary 1). Now we shall use them for more detail investigation of asymptotics ofD(t) and
its increments.

We shall try to give the answers on the questions:

1) What is a rate of growth of total claims whenT →∞?

2) How large can be the fluctuations of the total claims/payments on the intervals whose length
aT increases, but slower thanT ?

Note that question about the order of magnitude of the total amount claim process was asked
in Embrechts et al. [ 7, section 8.5].

There is numerous results concerning asymptotic behavior of increments of the random work
S(n), Wiener and related processes and certain types of stable Lévy processes. We refer to [5, 6,
8, 9, 14, 15, 23] and references there.

Two approaches are applied to investigate the size of increments of partial sums. One of
them is rather straightforward, it uses the properties of d.f.F (x) and is based on large deviation
technique; the other one - exploits strong invariance principle for partial sums.

The task of the forthcoming sections is investigation the rate of growth and magnitude of
increments of random sumsD(t).

We shall prove certain modifications of the LIL forD(t) ast → ∞ under various moment
assumption on{Xi, i ≥ 1} and{Zi, i ≥ 1} and study the order of magnitude of the increments
D(T + aT )−D(T ) over the intervals, whose lengthat grows, but not faster thanT .
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The main tool of investigation – application of strong invariance principle forD(t) in combi-
nation with Erd̈os-Ŕenyi type limit theorems forW (t) or Yα(t).

We shall consider separately two situations :smallclaims andlarge claims. In the actuarial
mathematics individual claim sizes are usually divided in two classes, i.e. small claims and large
claims, according to the tail behavior of their distribution functionF (x).

Claims are calledsmall if F (x) is light-tailed satisfying Craḿer’s condition

M(u) = E exp(uX1) <∞ for u ∈ (0, u0);

in opposite case, when moment generating function does not exist for anyu > 0, the claims are
calledlarge (F (x) is heavy-tailed).

But in our set up we shall distinguish two sub-classes in the class of large claims: first one
includes r.v. which have finite moments of orderp > 2, while second sub-class consists of positive
r.v. in domain of normal attraction of the stable lawGα,1 with 1 < α < 2, β = 1; in this case
r.v. X∗i = −Xi and their sums are attracted to a stable lawGα,−1 with the same1 < α < 2 and
β = −1.

It is natural to assume that inter-arrival timesZi have distributions with tails not heavier than
claims.

6. THE RATE OF GROWTH OF RANDOM SUMS

In this Section we study the asymptotic behavior ofD(t) ast→∞ and prove generalizations
of the LIL under various moment assumptions on{Xi, i ≥ 1} and{Zi, i ≥ 1}.

6.1. All random variables have finite variance.

Theorem 8 (Classical LIL for random sums). Let {Xi, i ≥ 1} and
{Zi, i ≥ 1} be independent sequences of i.i.d.r.v. withEX1 = m < ∞, 0 < EZ1 = 1/λ < ∞,
σ2 = V arX1 <∞, τ2 = V arZ1 <∞. Then a.s.

lim sup
t→∞

|D(t)−mλt|√
2t ln ln t

= ν, ν2 = λσ2 + λ3m2τ2.

5.2.{Xi, i ≥ 1} are attracted to the stable lawGα,−1, butEZ2
1 <∞.

Whenβ = −1, the processYα(t) = Yα,−1(t) has only negative jumps. We omitβ in this case.

In general it is impossible to find the exact upper bound for the growth rate of the stable
process, but it can be done in particular (important for applications) mentioned case of stable pro-
cesses without positive jumps (β = −1), see Zinchenko [23].
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Theorem 9. Let {Xi, i ≥ 1} satisfy condition(C) with 1 < α < 2, β = −1 andEZ2
1 < ∞ .

Then a.s.

lim sup
t→∞

D(t)−mλt

t1/α(B−1 ln ln t)1/θ
= λ1/α,

whereB = B(α) = (α− 1)α−θ| cos(πα/2)|1/(α−1), θ = α/(α− 1).

Corollary 2. Theorems 8 and 9 are true whenN(t) is a homogeneous Poisson process.

6.3.{Xi} ∈ DNA(Gα1,−1) and{Zi} ∈ DNA(Gα2,β) with 1 < α1 < α2 < 2.

Theorem 10.Let {Xi, i ≥ 1} satisfy (C) with 1 < α1 < 2, β = −1, and{Zi, i ≥ 1} satisfy(C)
with 1 < α2 < 2, |β| ≤ 1 . Suppose thatα1 < α2. Then a.s.

lim sup
t→∞

D(t)−mλt

t1/α1(B−1
1 ln ln t)1/θ1

= λ1/α1 ,

B1 = B(α1) = (α1 − 1)α−θ1
1 | cos(πα1/2)|1/(α1−1),

θ1 = α1/(α1 − 1).

7. ERDÖS-RÉNYI-CSÖRGŐ-RÉVÉSZ TYPESLLN FOR RANDOM SUMS

Here we study the magnitude of increments total claim amount process, i.e.D(T + aT ) −
D(T ). Similar to Section 6 we explore this topic step by step.

7.1. {Xi, i ≥ 1} and{Zi, i ≥ 1} have finite variance.

In this case centered processD(t) − mλt can be a.s. approximated by the Wiener process
with appropriate error term, whose form depends on additional moment conditions. It gives the
possibility to extend the Erd̈os-Ŕenyi (1970), Cs̈orgő-Révész (1981) results about the asymptotic
behavior of the increments of Wiener process on asymptotics ofD(T + aT ) − D(T ) . Notice
that additional assumptions which determine the form of approximation term have impact on the
length of intervalsaT , which appear in next theorems.

Theorem 11.(Small claims, light-tailed inter-arrival times). Let {Xi, i ≥ 1} and{Zi, i ≥ 1} be
independent sequences of i.i.d.r.v.,EX1 = m, varX1 = σ2, EZ1 = 1/λ > 0, varZ1 = τ2,

E exp(uX1) <∞, E exp(uZ1) <∞, (16)

as|u| < u0, u0 > 0, functionaT , T ≥ 0 satisfies following conditions:0 < aT < T andT/aT

does not decrease inT . Also
aT / lnT →∞ asT →∞. (17)

Then a.s.

lim sup
T→∞

|D(T + aT )−D(T )−mλaT |
γ(T )

= ν, (18)
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where
ν2 = λσ2 + λ3m2τ2,

γ(T ) = {2aT (ln lnT + lnT/aT )}1/2.

Theorem 12. Let {Xi, i ≥ 1}, {Zi, i ≥ 1} andaT satisfy all conditions of Theorem 11 with
following assumption used instead of (16)

EXp1
1 <∞, p1 > 2, EZp2

1 <∞, p2 > 2.

Then (18) is true ifaT > c1T
2/p/ lnT for somec1 > 0, p = min{p1, p2}.

7.2. On the second step we assume that i.i.d.r.v.{Xi, i ≥ 1} are attracted to an asymmetric
stable law.

In this case we use Theorem 6 or Theorem 7 and variant of Erdös-Ŕenyi-Cs̈orgő-Révész type
law for α-stable Ĺevy process without positive jumps (Zinchenko (1987)).

Theorem 13.Suppose that{Xi, i ≥ 1} satisfy (C) with 1 < α1 < 2, β = −1, {Zi, i ≥ 1} satisfy
(C) with 1 < α2 < 2, α1 < α2 or EZ2

1 < ∞, EX1 = m, EZ1 = 1/λ > 0. FunctionaT is
non-decreasing,0 < aT < T , T/aT is also non-decreasing and providesdT

−1T 1/α−%2 → 0 for
certain%2 > 0 determined by error term in strong invariance principle. Then a.s.

lim sup
T→∞

D(T + aT )−D(T )−mλaT

dT
= λ1/α1 , (19)

where normalizing functiondT is

dT = a
1/α1

T {B−1(ln lnT + lnT/aT )}1/θ1 ,

B1 = B(α1) = (1− α1)α−θ1
1 |cos(πα1/2)|1/(α1−1) ,

θ1 = α1/(α1 − 1).

8. CONCLUSIONS

Small claims. In this case centered processD(t) − mλt satisfies two-sided classical LIL
(Theorem 8). So, for larget we can a.s. indicate upper/lower bounds for growth of total claim
amount claim processD(t) asmλt± ν

√
2t ln ln t.

Asymptotic behavior of the incrementsD(T + aT ) −D(T ) for small claims is described by
generalization of Erd̈os-Ŕenyi-Cs̈orgő-Révész type limit theorem (Theorem 11), which can be ap-
plied to increments over intervals whose lengthaT < T , butaT / lnT →∞ asT →∞.

Large claims. In the case, when claims do not have finite exponential moments, but posses
finite moments of orderp > 2, processD(t) also satisfies LIL and Csörgő-Révész type limit
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theorem, but with more restrictive conditions on intervals’ lengthaT > cT 2/p/ lnT for some
c > 0 (Theorem 12).

WhenEX2
1 = ∞, we consider the positive r.v. in domain of normal attraction of asymmetric

stable lawGα,1 with 1 < α < 2, β = 1. For instance, it can be r.v. with Pareto type tails with
corresponding1 < α < 2. If these claim sizes’ distributions additionally satisfy condition (C),
then processD∗(t) = −D(t) = −

∑N(t)
i=1 Xi obeys the modification of the LIL (Theorems 9, 10

), i.e.

lim sup
t→∞

mλt−D(t)
t1/α(B−1 ln ln t)1/θ

= λ1/α,

and its increments – Theorem 13 . Note that in this case limit results have one-side form.
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[8] Erdös, P., Ŕenyi,A.,On a new law of large numbers, J. Analyse Math,23, (1970), 103–111.
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Abstract

In mathematics and statistics there exist many divergences (see for example Read and
Cressie (1988), Liese and Vajda (1987), Pardo (2006)). One of them, which has a special
appeal since it originates from Shannon’s entropy (a well known index of diversity) and its
concavity property, is Jensen’s difference as it was called by Burbea and Rao (1982). The
Jensen difference is given by

���� �� � �
�
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�
��� ��

�
�
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����� ������ �

where ���� � �

�

�

�� �� �� is the Shannon entropy between the probability vectors � �

���� � � � � ���
� and � � ���� � � � � ���

� . Continuing our research on the properties and the
use of divergence and information measures in the actuarial field, in the present paper, we
investigate the properties of the Jensen difference in the case of non-probability vectors. This
appears in actuarial graduation. We also investigate the use of Jensen’s difference in minimum
discrimination information, MDI, and in the problem of determining a client’s loss distribution
(Brockett, 1991).

Keywords. Jensen difference, divergence measures, graduation, loss distribution

1 Introduction

The dominating notion in Information Theory is Shannon’s entropy given by

���� � �
�
�

���� �� ���� or ���� � �

�
���� �� ���� ��

depending on whether the random variable � is discrete or continuous with distributions ����
or ����, respectively. In the latter case, ���� is also called differential entropy. This measure
quantifies the expected uncertainty related with the result of an experiment. In other words it
provides information for the predictability of the result of a random variable � . The bigger the
entropy the less concentrated the distribution of � and thus an observation of � provides a little
information.

Shannon (1948) used entropy to compare distributions while Kullback and Leibler (1951) intro-
duced the discrimination information function (Kullback - Leibler directed divergence) between
two distributions. Since then statisticians and econometricians have developed information indices
for categorical data analysis, regression modelling, canonical correlation, simultaneous equations,
time series, testing distributional hypotheses, and describing income disparity, to name a few. In-
formation measures are usually grouped into two categories: entropy type and divergence type
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measures. The most well known representative of the first group is Shannon’s entropy while for
the latter group the Kullback - Leibler directed divergence, the power and Jensen divergences.

In sciences there exist many measures of divergence. The most well known is the Kullback -
Leibler directed divergence. Since the appearance of this divergence, a large number of measures
of divergence have been proposed, with several properties, axiomatic or not, and several attempts
for their use and establishment have been made in several fields. Besides the basic properties,
sampling distributions of sample estimates of the various measures of divergence have been stud-
ied, mostly asymptotic distributions, and this has led to tests of hypotheses, mostly goodness of fit
and confidence intervals for the parameters of the statistical model. Attempts for the unification
of the measures and the theory have also been made with main representative the �-divergence

������� ��� � �
�
����� ��� �

�
�

�
�����

�����

�
����� ��

of Csiszar and later the almost equivalent family of power divergences. Here �����, ����� are
pdf’s and ���� is a convex function satisfying certain conditions. There exist, however, diver-
gences which cannot be obtained from the �-divergence (or the power divergence). One of them
is Jensen’s difference given above in the abstract, which is also known as Sibson’s information ra-
dius [cf. Sibson (1969)] and is a simple special case of divergences originating from �-entropies,
where now � is a concave function. For details see Mathai and Rathie (1975), Burbea and Rao
(1982), Pardo et al. (1995) and Pardo (2006) and references cited there in.

The properties, both population and sampling, of these divergences in various statistical prob-
lems have not been fully studied or developed. We intend to do this in our future research. Jensen’s
difference has a special appeal because of its simplicity in terms of entropies. The advantages and
disadvantages over existing divergences is an open problem and requires a comparative study. In
actuarial science, while entropy or the principle of maximum entropy are considerably used as it
is demonstrated in Section 2 below, recent and modern divergences are not much in use.

The first major use of a measure of divergence in actuarial science is in Brockett’s (1991) work,
who used the Kullback - Leibler divergence. In general, the Kullback - Leibler divergence is
the first, and sometimes the only, measure of divergence used for the solution of actuarial prob-
lems. This gave us the motivation to examine the role and performance of other divergences and
especially that of Jensen’s difference in actuarial science.

In this paper after surveying in Section 2 the use of information theory in actuarial science we
present in Section 3 two actuarial problems involving divergences. One of them is the determina-
tion of a client’s loss distribution and the second is the graduation of mortality rates. Both of them
have been presented and solved by means of the Kullback-Leibler divergence, in the seminal paper
of Brockett (1991). In this paper the emphasis is on the Jensen difference which we study in detail
in Section 4. A special feature of our approach is the use of non-probability vectors which appear
in the actuarial graduation problem but may appear in many other situations. In Section 5 we give
a numerical example concerning the determination of a clients loss distribution and graduation
while in Section 6 we give concluding results.

2 Use of information theory in actuarial science

Information theory is related to actuarial science through the use of information measures for the
treatment and solution of actuarial problems. In general terms we can categorize the use of infor-
mation theory into three categories: through entropy, through the Kullback-Leibler divergence or
relative entropy and through other measures.
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Entropy, as a measure of uncertainty and information, is useful for studying and evaluating actu-
arial models. A well known method of estimating probability models is the method of maximum
entropy (ME). In this method, starting with some moments, which may provide the only avail-
able information for the model, the model which maximizes the entropy is selected. This method
is widely used in several sciences such as economics, accounting, biology, medicine, ecology,
actuarial science etc. (Kapur, 1989).

Berliner and Lev (1978) derived the Poisson and Pareto distributions for insurance problems
using ME principle and showed by an application of Bayes’ theorem that the ME principle also
leads to estimates of the parameters of the density function. His conclusion was that there are
many possibilities of applying the ME principle in insurance and it represents a vast and interesting
hunting ground for actuaries. Many of the procedures developed by actuaries in a more or less
empirical way for treatment of special problems may have a simple interpretation through the
concept of ME.

Haberman, in his comments on a paper by Moore (1980), suggests the use of the ME principle
as a method of choosing the distribution in a wide range of circumstances where the normal dis-
tribution is used. Another actuarial area of potential use of ME is the estimation of the largest or
smallest members of a set (i.e. extreme values) which could have an application in such diverse
fields as the estimation of very large insurance claims and the prediction of stock market peaks (or
troughs) in the long-term interest rate.

Kapur (1989) presents some examples of applications of the ME principle in insurance. Espe-
cially, he employs the ME procedure to find the probability distribution of the number of claims
on an insurance company in a time interval, to find the distribution of catastrophic events etc.

Levin and Tchernitser (2003) choose a probability distribution for the stochastic variance (SV)
that provides the most uncertain outcomes given only information about the average value using
the ME principle. In the case of one asset, the Maximum Entropy principle gives a broad class of
pure jump Generalized Gamma processes for the SV.

The ME principle, when applied to credit risk, leads to models containing the minimal assump-
tions coherent with the available information (Brunel, 2004). These models are called minimal
models and constitute a reference point when we design a new model. She applied this approach
to the choice of the loss distribution of credit portfolios, asset backed securities and to the distribu-
tion of recovery rates, and she showed how to use it for challenging the assumptions of any model
in these areas.

Darooneh (2004) uses the ME principle for pricing the non-life insurance. Specifically, he
employs the ME procedure in order to calculate the price density (the insurance price is defined
through to a probability function), assuming that the average of the market’s wealth is constant.
Finally, Luthi and Doege (2005) discuss the family of entropy based risk measures.

The Kullback-Leibler directed divergence was first introduced in actuarial problems as an in-
formation theoretic method for actuarial graduation by Brockett and Zhang (1986). More specifi-
cally, Zhang and Brockett (1987) tried to construct a smooth series of 	 death probabilities �
��,
� � �� �� � � � � 	 which is as close as possible to the observed series ����, in the sense of Kullback-
Leibler divergence, subject to three mathematical and two actuarial constraints.

Brockett (1991) gives a very good description of the use of information theory in actuarial
science. He describes the use of the Kullback-Leibler divergence for model selection and how
information theory unifies and extends certain Bayesian methods used in actuarial science. He
also presents the loglinear model, and its special case the logit model which have applications in
several aspects of actuarial science as a consequence of information theoretic modelling. He also
describes the use of information theory in the determination of a client’s loss and the adjustment
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of mortality tables.
Xu et al. (1998) calculate upper and lower bounds on the stop-loss premium, i.e. the expected

payment by the reinsurer, when the claim distribution is unknown but assumed to be in the prox-
imity of the empirical distribution of past claims. The ”distance” from the observed empirical
distribution is measured by the I-divergence, i.e. the Kullback-Leibler information number. This
”distance” is then used to determine the bounds.

Relative entropy is commonly used to price risky financial assets in incomplete markets, while
distortion is widely used to price insurance risks and in risk management (Reesor and McLeish,
2002). One can obtain the conditional tail expectation (CTE) or Tail-VaR, a well-known risk
measure, via the minimization of the Kullback-Leibler divergence between the distorted and
original distributions subject to the constraint that the entire distribution is supported in the tail
����  � ����. Relative entropy provides an easy way of constructing new coherent risk mea-
sures by prescribing new sets of moments constraints.

Information measures were used to establish a prior distribution for the dispersion parameter
� of the exponential dispersion model. Landsman and Makov (1998) used the maximum entropy
principle and Landsman and Makov (1999) minimized the Fisher information. This latter criterion
was also used in Landsman and Makov (2001) to establish a prior distribution for � in conjunc-
tion with knowledge on the probability that a claim exceeds a certain threshold, thus allowing for
information on tail behavior to affect the premium. Promislow and Young (2000) develop equi-
table credibility premiums using an entropy loss function, instead, so that a measure of the relative
difference between the charged premium and the true premium is minimized in place of the usual
squared error.

Finally, Sachlas and Papaioannou (2008a, 2008b) present the use of the Cressie and Read di-
vergence in the problem of actuarial graduation and suggest the minimization of the divergence
subject to an additional to those suggested by Zhang and Brockett (1987) constraint.

3 Actuarial problems

Two actuarial problems that can be solved via information theoretic methods are the determination
of a client’s loss distribution and the graduation of mortality rates (Brockett, 1991).

3.1 Determination of a client’s disability distribution

Most insurance companies adopt a reference or a standard distribution for losses. Here we are con-
cerned with the distribution of the duration, say in days, of a disability. This distribution might not
be immediately applicable to a particular client’s situation. So it is common to make adjustments
in order to reflect the known characteristics of the client. Particularly, for the determination of the
distribution of a client’s disability duration with expectation � different from that of a standard
table, which is the less distinguishable from the standard table, we can minimize a measure of
divergence

���� ��

subject to
��
���

�� � � and
��
���

���� � ��

where �� is the known probability of the disability having a duration of �� days, obtained from
a reference table,

��
��� �� � �, �� is the unknown probability of a duration of �� days to be
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developed for the particular client and ��� ��� � � � � �� are � discrete times of interest and given in
the standard table. The first constraint is used in order the ��’s to form a probability distribution.

Brockett (1991) describes the use of Minimum Discrimination Information for this problem.
Specifically, he minimizes the Kullback - Leibler divergence, i.e.

��
���

�� ��

�
��

��

�

subject to the two above mentioned constraints. We note that Brockett solves the above minimiza-
tion problem via its unconstrained dual convex programming problem.

3.2 Graduation through divergences

A common problem for an actuary is the description of the actual but unknown mortality pattern
of a population. In order to achieve this the actuary calculates from raw data crude mortality rates,
death probabilities or forces of mortality. Because these entities form an irregular series the actuary
revises the initial estimates with the aim of producing smoother estimates, with a procedure called
graduation. There are several methods of graduation classified into parametric curve fitting and
non-parametric smoothing methods. A very good reference book for graduation is that of London
(1985).

Brockett and Zhang (1986) were the first to propose the use of information theoretic ideas in
graduation. Zhang and Brockett (1987) tried to construct a smooth series of 	 death probabilities
�
��, � � �� �� � � � � 	 which is as close as possible to the observed series ���� and in addition they
assumed that the true but unknown underlying mortality pattern is (i) smooth, (ii) increasing with
age �, i.e. monotone, (iii) more steeply increasing in higher ages, i.e. convex. They also assumed
that (iv) the total number of deaths in the graduated data equals the total number of deaths in the
observed data, and (v) the total age of death in the graduated data equals the total age of death in
the observed data. By total age of death we mean the sum of the product of the number of deaths
at every age by the corresponding age. The last two constraints imply that the average age of death
is required to be the same for the observed and graduated mortality data. In the sequel and in this
section, when we use � � �� �� � � � � 	 we shall mean the corresponding ages ��� ��� � � � � ��.

Mathematically the five constraints are written as follows: (i)
�
�

�
��
�

��
�� , where � is a

predetermined positive constant and ��
� � �
�	 

��� � 

��� 	 
���; (ii) �
� � �, where
�
� � 
��� � 
�; (iii) ��
� � �, where ��
� � 
� � �
��� 	 
���, (iv)

�
�

��
� �
�
�

����,

where �� is the number of people at risk in the age �; and (v)
�
�

���
� �
�
�

�����. In matrix

notation the constraints can be written as: (i) ����� ���� � ������ � � , where � is an
�	 � 
� � 	 matrix with rows of the form ��, ��, 
, �
, �, �, � � �, �); (ii) �� � �, where � is
an �	� �� � 	 matrix with rows of the form (�, ��, �, �, �, � � �, �); (iii) �� � �, where � is an
�	 � �� � 	 matrix with rows of the form (�, �, ��, �, �, � � �, �); (iv) ��� � ���, where � �
���� ����� ���� �������

� ; and (v) ��� � ���, where � � ����� ��	������� ���� ��		����������
� ,

respectively. For more details see Zhang and Brockett (1987). It is easy to see that the constraints
(i) - (v) may be written in the form of ����� � �

��
�	�� 	 
�� � 	 �� � �, � � �� �� �����, where,

for each �, 	�, 
�, �� are a positive semidefinite matrix and constants, respectively easily written
down from (i) - (v) and in this case we have � � ��		 �� constraints, where 	 is the number of
ungraduated values.

In order to obtain the graduated values, Brockett (1991) minimize the Kullback-Leibler diver-
gence between the crude death probabilities � � ���� ��� � � � � ���

� and the new death probabili-
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ties � � �
�� 
�� � � � � 
��
� ,

�	
����� �
�
�


� ��

�

��
�

subject to the constraints (i) - (v).
It is easily seen that the mortality rates (death probabilities) � and � are not probability vectors

since we have
��

���
��  � and

��
���


�  �. To solve this problem, Sachlas and Papaioannou

(2008a, 2008b), as a byproduct, investigated the properties of measures of divergence in the case
of non-probability vectors, concluding that under some conditions these can be used as proper
divergence measures and proposed the use of an extra constraint in the minimization problem, i.e.

(vi)
��

���

� �

��
���

��

Constraint (vi) can be written in vector notation and thus in the form of ����� as ���� ��� � �,
where � � ��� �� ���� ��� .

Sachlas and Papaioannou (2008a, 2008b) also presented a new and unifying way to obtain the
graduated values 
�. This is by minimizing the Cressie-Read divergence

�������� �
�

��� 	 ��

�
�


�

��

�

��

��
� �

�

for given � subject to constraints (i) - (v) and/or (vi), i.e. � � � and ����� � �
��

�	��	

�
� �	�� �

�, � � �� �� ����� 	 �, where � � ��	 	 ��. The minimization is done for various values of the
parameter � and the objective is to find the best � for graduation purposes.

4 The Jensen difference

As stated in the Introduction in mathematics and statistics there exist many divergences between
discrete or continuous distributions (see for example Read and Cressie (1988), Liese and Vajda
(1987), Mathai and Rathie (1975)). One of them, which has a special appeal since it originates
from Shannon’s entropy and the concavity property, is Jensen’s difference as it was called by
Burbea and Rao (1982). The Jensen difference between probability vectors is given by

����� ��� � �
�
�
���

� 	 ���
�
� �

� ������ 	����� �

where ����� � �
�
�

��� �� �
�
� is the Shannon entropy between the probability vectors �� �

����� � � � � �
�
��

� and �� � ����� � � � � �
�
��

� .
The Jensen difference is a natural measure of divergence between the probability vectors �� and

�� as it satisfies the two basic properties of a divergence measure. It is nonnegative and vanishes
if and only if �� � ��. An interesting property of ����� ��� is that considered as a function of
���� ��� is convex.

4.1 The Jensen difference without probability vectors

In this section we will derive some properties of the Jensen difference when we have non-probability
vectors as is the case in actuarial graduation. This also supplements our previous work on the
properties of divergence measures without probability vectors.
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Definition 1. We define as

���� �� � �
�
�
���	 ��

�
� �

� ����� 	���� � (1)

the Jensen difference between the non-probability vectors � � ���� � � � � ���
� and � � ���� � � � � ���

� ,
where � � �, � � � and

�
�

�� �� � and
�
�

�� �� �. The ���� � �
�
�

�� �� �� is the Shannon

entropy.

Now we have to see if this measure has information theoretic and divergence properties. For
convenience we will assume in the sequel that

�
�

�� �
�
�

��.

Lemma 1. If
�
�

�� �
�
�

��, then for the Jensen difference involving non-probability vectors �� �,

it holds that

���� �� �
��
�

��
����� ����

where ����� ��� is the Jensen difference between the two probability vectors ��� ��.

Proposition 1. Let
�
�

�� �
�
�

��. Then ���� �� � � with equality if and only if � � �, where �

and � are non-probability vectors.

Definition 2. (Bivariate Shannon entropy) Let ���� �� be a bivariate measure (non - probability
function) associated with two discrete variables � , � in �� for which it holds

�
�

�


���� �� �� �.

We define the Shannon entropy involving a bivariate non-probability function � as

���� ��� � �
�
�

�


���� �� �� ���� ���

Definition 3. (Conditional Shannon entropy) For the discrete variables � , � and the bivariate
non-probability function ���� ��, as given above let ���� �

�


���� ��,  ��	�� � �����
���� , ���� ��

�

���� ��, and ���	�� � �����
��� , � � �� �. We set

�� ����� � �
�


 ��	�� �� ��	������� ���� �
�
�

���	�� �� ���	��

and define
�� ��� � � !�

	
�� ����� �



�
�
�

����
�


 ��	�� �� ��	���

���� ��� � !�

	
��������



�
�


����
�
�

���	�� �� ���	���

Definition 4. (Bivariate Jensen difference) Let ����� ��, � � �� �, be two bivariate measures
(non-probability functions) associated with two discrete variables � , � in �� for which it holds�
�

�


����� �� �� �. We define the Jensen difference between two bivariate non-probability func-

tions ��, �� as

���� ���� ��� � �
�
�
���� 	 ���

�
� �

� ������ 	�����

� �
�
�

�


�
������� �� 	 ����� ��� ���

�
� ������ �� 	 ����� ����

��
�

�
�
�
�

�


����� �� �� ����� ���
�
�

�


����� �� �� ����� ��

�
�
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Definition 5. (Conditional Jensen difference) For the discrete variables � , � and the bivariate
non - probability functions ����� ��, � � �� �, as given above let ����� �

�


����� ��,  ���	�� �

������
�����

, ����� �
�
�

����� ��, and ����	�� �
������
����

, � � �� �. We set

�� ����� ��  �� � �
�
�
�� � 	  ��

�
� �

� ��� �� 	�� ��

� �
�
�

�


�
�� ���	�� 	  ���	��� ���

�
�� ���	�� 	  ���	����

��
�

�
�
�
�

�


 ���	�� �� ���	���
�
�

�


 ���	�� �� ���	��

�

and define

�� ��� ��  �� � !�

	
�� ����� ��  ��



� �

�
�

�����
�


�
�� ���	�� 	  ���	��� ���

�
� � ���	�� 	  ���	����

��
�

�
�
�
�

�����
�


 ���	�� �� ���	��

�
�
�

�����
�


 ���	�� �� ���	��

�
�

Similarly we define ��������� ��� and ���� ���� ���.

Proposition 2. (Strong Additivity) Let ��, �� be two bivariate non-probability functions associated
with two discrete variables � , � in �� as in Definition 5. Then

���� ���� ��� � ������ ��� 	 �� ��� ��  �� � �� ���� ��� 	 ���� ���� ����

where the functions ��,  �, ��, ��, � � �� � are as in Definition 5.

For weak additivity we have the following proposition.

Proposition 3. (Weak additivity) If  ���	�� � ����� and thus ����� �� � ����������, � � �� �,
we have that the random variables ��� � �, which are the “standardized” values of ��� , are
independent, and

���� ���� ��� � ������ ��� 	 �� ���� ����

Proposition 4. (Maximal information and sufficiency) Let � � " ��� be a measurable transfor-
mation of � , then

������ ��� � �� ���� ����

with equality if and only if � is ”sufficient”, where �� � �����, �� � �����, � � �� �.

For proofs of the previous results see Sachlas and Papaioannou (2009)
We have already seen that the Jensen difference ���� �� for non-probability vectors, under some

conditions is nonnegative, additive and invariant under sufficient transformations. It also shares
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the property of maximal information. So, we can regard ���� �� as a measure of divergence,
provided that

�
�

�� �
�
�

��.

Since the Jensen difference can be considered as a measure of divergence we can use it in or-
der to graduate actuarial entities, in the way we described in Section 3.2. This involves convex
minimization with constraints and can be done using standard routines. It is of interest to exam-
ine the Lagrangian dual. In the sequel we derive the Lagrangian dual of the Jensen difference
minimization problem.

4.2 Lagrangian duality for the Jensen difference

The quadratically constrained Jensen difference problem is defined as finding � 
 �� which
solves the primal problem

�# � ����
��
���

�
���� 	 ��� ��

�
�
���� 	 ���

�
	 �

�

�
��
���

�� ���� 	
��
���

�� ����

�

subject to
����� �

�
��

�	��	 
�� �	 �� � �, � � �� �� � � � ��, � � �,
where � � ���� ��� � � � � ���

� is a given vector with strictly positive components, 	� is a given
positive semi-definite matrix for each �, 
� 
 �� and �� are given constants not both equal zero.

In the sequel, we will try to derive a dual representation of the primal problem �# � by means
of Lagrangian duality. This will be done by using a simple decomposition argument to convert
problem �# � to an equivalent convex program with linear and quadratic constraints.

Because 	� is a semipositive definite 	 � 	 matrix, we can express it as 	� � ��
� ��, where

�� is an 	� � 	 matrix and 	� is the rank of 	�, � � �� �� � � � ��. In this case the constraints
can be written as ����� � �

��
���

� ��� 	 
�� � 	 ��. Defining the new variables �� � ���,
�� 
 ��� , � � �� �� � � � ��, the problem �# � is equivalent to the following convex program with
linear equality and quadratic inequality constraints:

�# �� ���
����

�
��
���

�
���� 	 ��� ��

�
�
���� 	 ���

�
	 �

�

�
��
���

�� ���� 	
��
���

�� ����

�
subject to

�
��

�
� �� 	 
�� �	 �� � �, ��� � ��, �� 
 ��� , � � �� �� � � � ��, � � �.

Let � � ���� ��� � � � � ���� 
 ��� � � � ����� , � � ������� � � � ����� 
 ��� � � � ����� and
$ � 	� 	 � � � 	 	�.

Theorem 1. The Lagrangian dual problem of �# � is given by

��� ���
����

�
�������

�
��

��
���

��

�%��� � �

�
%��� ��

�
��%

���

�%��� � �

�
�

�

�
��

�
��

�%��� � �

�
� &�

�

�
�

�

��
���

����
�

��
	 ��	 �� �

�
�

where �� � ������ ����� � � � � �����

Theorem 2. (a) If �# � is feasible then ��� �# � is attained and ��� �# � � ��� ���. Moreover, if
there exists an � 
 �� satisfying �  �, ����� ' �, � � �� � � � ��, then ��� ��� is attained and
��� �# � � ��� ���.
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(b) If �� solves the primal problem �# � and ��� 
 ��� , � 
 ��
� solve the dual problem ���,

then

��� �
��

� ���

�
�

��
���

���� 

�
� 	 ���� ����

�
� �

�

For the proof of Theorems 1 and 2 see Sachlas and Papaioannou (2009)

5 Numerical Illustration

5.1 Determination of a client’s disability distribution with Jensen’s difference

In this section we use the Jensen difference to determine the loss distribution that meets the special
characteristics of a client than the reference table that the insurance company uses. The data that
we will use come from Bowers et al. (1997, Table 13.2). It is a standard table with mean duration
of 31.35 days, given in the second column of Table 1. It is easy to notice that

��
��� �� � �. Sup-

pose that we have a client with expected duration of � � �� and we want to construct a duration
table for this particular client which is the least distinguishable from the standard one. This prob-
lem was also solved by Brockett (1991) by minimizing the Kullback-Leibler divergence between
the unknown probabilities for the client and the corresponding probabilities of the standard table
subject to the constraints

��
��� �� � � and

��
��� ���� � ��. His results are shown in the third

column of Table 1.
Our approach to this problem is the minimization of another divergence - the Jensen difference

- subject to the same constraints, i.e.

��	 ���� �� � �
�
�
���	 ��

�
� �

� ����� 	����

subject to
��
���

�� � � and
��
���

���� � ���

Our results are shown in the fourth column of Table 1. We notice that the two methods find
almost the same results. We repeated the procedure with � � �� and � � 
�, respectively. The
results are again similar.

5.2 Actuarial graduation with Jensen’s difference

For illustration, we will use a data set of death probabilities coming from London (1985, p. 20).
It consists of 15 death probabilities belonging to ages 70 to 84 (computed from a total of 2073
observations). These data set was graduated by London (1985) by graphic means and a lin-
ear transformation of the graduated values and by Brockett (1991) via the minimization of the
Kullback-Leibler divergence subject to constraints (i) - (v).

We graduated the crude values via the minimization of the Jensen difference. The minimiza-
tion was conducted subject to constraints (i) - (v), proposed by Brockett (1991), the additional
constraint

�
��
��

���


� �
��

���

��

that Sachlas and Papaioannou (2008a) proposed and finally subject to constraints (i) - (iii) and
(vi). The relevant results are presented along with the raw data in Table 2(a).
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� � �� � � �� � � 
�

� Standard K-L Jensen K-L Jensen K-L Jensen
1 0.03500 0.05081 0.05298 0.06022 0.06588 0.02777 0.02810
2 0.03474 0.04968 0.05151 0.05832 0.06285 0.02775 0.02806
3 0.03349 0.04717 0.04865 0.05486 0.05830 0.02694 0.02721
4 0.03318 0.04604 0.04724 0.05303 0.05563 0.02687 0.02712
5 0.03195 0.04367 0.04459 0.04982 0.05164 0.02606 0.02627
6 0.03160 0.04254 0.04324 0.04808 0.04927 0.02595 0.02614
7 0.03040 0.04031 0.04079 0.04513 0.04576 0.02514 0.02530
8 0.03002 0.03921 0.03951 0.04348 0.04366 0.02499 0.02513
9 0.02885 0.03712 0.03725 0.04077 0.04057 0.02419 0.02430

10 0.02701 0.03423 0.03423 0.03725 0.03675 0.02280 0.02289
11 0.02530 0.03159 0.03147 0.03404 0.03332 0.02150 0.02157
12 0.02370 0.02915 0.02894 0.03111 0.03023 0.02028 0.02033
13 0.02222 0.02692 0.02664 0.02846 0.02747 0.01915 0.01917
14 0.02083 0.02485 0.02452 0.02603 0.02497 0.01808 0.01808
15 0.01953 0.02295 0.02258 0.02381 0.02272 0.01706 0.01706
16 0.01831 0.02120 0.02080 0.02178 0.02067 0.01611 0.01609
17 0.01772 0.02021 0.01978 0.02057 0.01943 0.01570 0.01567
18 0.01662 0.01867 0.01823 0.01882 0.01770 0.01483 0.01479
19 0.01611 0.01783 0.01737 0.01780 0.01668 0.01447 0.01442
20 0.01510 0.01646 0.01600 0.01628 0.01520 0.01366 0.01361
21 0.01465 0.01573 0.01526 0.01541 0.01435 0.01334 0.01328
22 0.01374 0.01453 0.01408 0.01410 0.01309 0.01260 0.01254
23 0.01334 0.01390 0.01344 0.01336 0.01237 0.01232 0.01225
24 0.01295 0.01329 0.01283 0.01265 0.01170 0.01204 0.01196
25 0.01214 0.01227 0.01183 0.01158 0.01068 0.01136 0.01129
26 0.01180 0.01175 0.01132 0.01098 0.01012 0.01112 0.01104
27 0.01106 0.01085 0.01044 0.01004 0.00924 0.01050 0.01041
28 0.01076 0.01039 0.00999 0.00953 0.00877 0.01028 0.01020
31 0.06361 0.05873 0.05634 0.05233 0.04811 0.06206 0.06145
38 0.04832 0.04014 0.03846 0.03346 0.03099 0.04947 0.04886
45 0.03753 0.02805 0.02698 0.02188 0.02062 0.04032 0.03976
52 0.02980 0.02004 0.01943 0.01462 0.01414 0.03360 0.03312
59 0.02399 0.01452 0.01424 0.00991 0.00989 0.02839 0.02800
66 0.01939 0.01056 0.01051 0.00674 0.00699 0.02408 0.02380
73 0.01586 0.00777 0.00787 0.00464 0.00502 0.02067 0.02051
80 0.01300 0.00573 0.00592 0.00320 0.00363 0.01778 0.01773
87 0.01077 0.00427 0.00451 0.00223 0.00266 0.01546 0.01552
91 0.12561 0.04690 0.05025 0.02362 0.02894 0.18531 0.18697

Table 1: Loss distribution determination through Kullback-Leibler divergence and Jensen’s differ-
ence
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Table 2: Several graduations through Jensen difference

� �� 
� (5 constraints) 
� (6 constraints) 
� (4 constraints)
70 0.044 0.062 0.054 0.059
71 0.084 0.066 0.061 0.064
72 0.071 0.071 0.068 0.069
73 0.076 0.075 0.075 0.073
74 0.040 0.080 0.082 0.078
75 0.104 0.086 0.089 0.085
76 0.160 0.093 0.097 0.092
77 0.058 0.099 0.104 0.098
78 0.110 0.106 0.112 0.105
79 0.093 0.113 0.119 0.112
80 0.139 0.131 0.138 0.132
81 0.154 0.156 0.159 0.157
82 0.183 0.182 0.180 0.184
83 0.206 0.209 0.201 0.212
84 0.239 0.238 0.222 0.242

(a) Graduated values

5 constraints 6 constraints 4 constraints
( 0.000199 0.0002 0.0002
) 16.62 16.70 16.93

Deviance 16.40 16.89 16.48
log-likelihood -713.12 -713.37 -713.16

*� 16.59 16.68 16.93

(b) Smoothness and goodness of fit values

The results appear nearly equivalent to those presented by London and Brockett. The differ-
ences are small. The value of the smoothness measure and the goodness of fit measures, i.e. ) ,
deviance, log-likelihood and *�, are given in Table 2(b). The numerical investigation of Sachlas
and Papaioannou (2008a), with same data set, compared the graduations made by London (1985),
Brockett (1991), the minimization of the Cressie-Read power divergence and the minimization of
the Jensen difference, with the conclusion that the overall winner is the graduation through the
minimization of the Jensen difference subject to constraints (i) - (v), as judged by ( and ) .

6 Conclusions

In this paper we studied the use of Jensen’s difference in actuarial science. Because mortality rates
are not probability vectors, and in order to use ���� �� for graduation purposes, we investigated
the properties of the Jensen difference in the case of non-probability vectors. We show that, under
some conditions it is nonnegative, additive and invariant under sufficient transformations. It also
shares the property of maximal information. So, we can regard ���� �� as a measure of divergence,
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provided that
�
�

�� �
�
�

��, and use it for graduation.

We also provided Lagrangian duality results for the problem of minimizing the Jensen differ-
ence subject to quadratic and linear inequality constraints. Especially, we derived the Lagrangian
dual problem of minimizing the Jensen difference, which proved to be unconstrained, and the so-
lution of the dual problem. These results are important in actuarial science and especially in the
problem of graduation of mortality rates were mortality rates do not constitute probability vectors.

The numerical investigation indicated that the use of Jensen’s divergence in actuarial problems
such as the loss distribution determination and the graduation is comparable to other divergences
used to these problems. Especially in the problem of graduation the minimization of the Jensen
difference between the crude and graduated rates seems to be the best ”divergence” method.
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Abstract

We deal with the problem of optimal linear estimation of the functional

Aζ =
∞∑

j=0

a(j)ζ(j)

which depends on the unknown values of a periodically correlated (cyclostationary) dis-
crete time stochastic processζ(j) from observations of the processζ(n) + θ(n) for n =
−1,−2, . . . , whereθ(n) is uncorrelated withζ(n) periodically correlated (cyclostationary)
sequence.
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linear prediction; observations with noise; mean square error; least favorable spectral densities;
minimax spectral characteristic.
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93E11

1 Introduction.

Traditional methods of solution of the linear extrapolation, interpolation and filtering problems
for stationary stochastic processes may be employed under the condition that spectral densities
of processes are known exactly (see, for example, selected works of A. N. Kolmogorov (1992),
survey article by T. Kailath (1974), books by Yu. A. Rozanov (1990), N. Wiener (1966), A. M. Ya-
glom (1987)). In practice, however, complete information on the spectral densities is impossible
in most cases. To find a solution to the problem one finds parametric or nonparametric estimates
of the unknown spectral densities or selects these densities by other reasoning. Then applies the
classical estimation method provided that the estimated or selected densities are the true one. This
procedure can result in significant increasing of the value of error as K. S. Vastola and H. V. Poor
(1983) have demonstrated with the help of some examples. This is a reason to search estimates
which are optimal for all densities from a certain class of the admissible spectral densities. These
estimates are called minimax since they minimize the maximal value of the error. A survey of
results in minimax (robust) methods of data processing can be found in the paper by S. A. Kassam
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and H. V. Poor (1985). The paper by Ulf Grenander (1957) should be marked as the first one where
the minimax approach to extrapolation problem for stationary processes was proposed. J. Franke
(1984, 1985, 1991), J. Franke and H. V. Poor (1984) investigated the minimax extrapolation and
filtering problems for stationary sequences with the help of convex optimization methods. This
approach makes it possible to find equations that determine the least favorable spectral densities
for various classes of densities. In the papers by M. P. Moklyachuk (1994, 1997, 1998, 2000,
2001), M. P. Moklyachuk and A. Yu. Masyutka (2005, 2006) the minimax approach to extrapo-
lation, interpolation and filtering problems are investigated for functionals which depend on the
unknown values of stationary processes and sequences.

In this article we deal with the problem of optimal linear estimation of the functionalAζ =∑∞
j=0 a(j)ζ(j) which depends on the unknown values of a periodically correlated (cyclosta-

tionary) discrete time stochastic processζ(j) from observations of the processζ(n) + θ(n) for
n = −1,−2, . . . , whereθ(n) is uncorrelated withζ(n) periodically correlated (cyclostationary)
discrete time stochastic process. The problem is reduced to the corresponding problem of optimal
linear estimation of the functionalA~ξ for multidimensional stationary stochastic process with the
help of approach proposed by E. G. Gladyshev (1961). Formulas are obtained for calculation the
mean square error and the spectral characteristic of the optimal linear prediction of the functional
A~ξ =

∑∞
j=0 ~a(j)~ξ(j) which depends on the unknown values of a multidimensional stationary

stochastic process~ξ(j) from observations of the process~ξ(n) + ~η(n) for n = −1,−2, . . . under
the condition that the spectral density matrixF (λ) of the process~ξ(n) and the spectral density ma-
trix G(λ) of the process~η(n) are known. The least favorable spectral densities and the minimax
spectral characteristic of the optimal linear prediction of the functionalA~ξ are found for classes
D = DF ×DG of spectral densities under the condition that spectral density matricesF (λ) and
G(λ) are not known, but classesD = DF ×DG of admissible spectral densities are given.

2 Generating stationary sequences.

Definition 1. A discrete time stochastic processζ(n) with zero mean,Eζ(n) = 0, and finite
variance,E|ζ(n)|2 <∞, is called cyclostationary or periodically correlated (PC) with periodT
if the correlation function of the process has the property

Eζ(n)ζ(m) = Kζ(n,m) = Kζ(n+ T,m+ T )

for everyn,m ∈ Z.
If ζ(n) is PC with periodT , then the functionKζ(n+ p, n) is T -periodic inn for everyp ∈ Z,

and we can apply the discrete Fourier transform and get the relations

Kζ(n+ p,m) =
T−1∑
j=0

e2πijn/Taj(n), (1)

aj(p) =
1
T

T−1∑
n=0

e−2πijn/TKξ(n+ p, p) (2)

Let
Hζ(n) = sp{ζ(k), k = n, n− 1, . . .}

Hζ = sp{ζ(k), k ∈ Z}



M. Moklyachuk - Robust prediction problem for periodically 53

If ζ(n) is PC with periodT , then the mappingV : ζ(n) → ζ(n+ T ), n ∈ Z, extends to a unitary
operator

V : Hζ → Hζ

The operatorV is calledT -shift operator ofζ(n). Let U be a unitaryT -th root ofV , such that
UT = V onHζ . Thenp(n) = U−nζ(n) is aT -periodic sequence andζ(n) = Unp(n).
Define

ξq(n) = Un

(
1
T

T−1∑
n=0

e−2πjnq/T p(n)

)
, q = 0, 1, . . . , T − 1. (3)

Hereξq(n) is aT -dimensional stationary sequence and the following representation holds true

ζ(n) =
T−1∑
q=0

e2πinq/T ξq(n), n ∈ Z. (4)

The sequenceξq(n) is calledgenerating sequenceof ζ(n). In this case the correlation function

Kζ(n+ p, n) =
T−1∑
j=0

e2πijn/T

(
T−1∑
k=0

e2πikp/T (ξk(p), ξk−j(0))

)
, (5)

where
(ξk(p), ξk−j(0)) = Eξk(p)ξk−j(0).

Therefore we can representaj(p) in the form

aj(p) =
T−1∑
k=0

e2πikp/T (ξk(p), ξk−j(0)) =

=
∫ π

−π
eips

T−1∑
k=0

Γk,k−j(ds− 2πk/T ) (6)

or

aj(p) =
∫ π

−π
eipsγj(ds), (7)

where

γj(ds) =
T−1∑
k=0

Γk,k−j(ds− 2πk/T ).

The matrix[Γk,j(ds)] is the spectral measure ofξq(n).

The family of measuresγj(ds) is called spectrum ofζ(n).

Proposition 1. (Gladyshev E. G.)A sequenceζ(n) is PC with periodT iff there is aT -dimensional
stationary sequenceξq(n) such thatζ(n) has representation (4)

ζ(n) =
T−1∑
q=0

e2πinq/T ξq(n), n ∈ Z.
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3 Estimates of functionals of periodically correlated discrete time
stochastic process.

Consider the problem of optimal linear estimation of the functionalAζ =
∑∞

j=0 a(j)ζ(j) which
depends on the unknown values of a periodically correlated (cyclostationary) discrete time stochas-
tic processζ(j) from observations of the processζ(n)+θ(n) for n < 0, whereθ(n) is uncorrelated
with ζ(n) periodically correlated (cyclostationary) sequence.

The periodically correlated (cyclostationary) discrete time stochastic processζ(j) can be repre-
sented in the form

ζ(n) =
T−1∑
q=0

e2πinq/T ξq(n), n ∈ Z.

whereξq(n) is aT -dimensional stationary sequence (generating sequence ofζ(n)).
The matrix spectral measure[Γk,j ] of ξq(n) and the spectrumγj of ζ(n) are related by the

formulas

γj(ds) =
T−1∑
k=0

Γk,k−j(ds− 2πk/T ).

Using these relations we come to conclusion that the problem of estimation of the functional

Aζ =
∞∑

j=0

a(j)ζ(j)

may be reduced to the problem of estimation of the functional

Aζ =
∞∑

j=0

a(j)ζ(j) =
∞∑

j=0

a(j)
T−1∑
q=0

e2πinq/T ξq(j) =

=
∞∑

j=0

T−1∑
q=0

aq(j)ξq(j) =
∞∑

j=0

~a(j)~ξ(j) = A~ξ,

which depends on values of multidimensional stationary stochastic process~ξ(j) = {ξq(j)}T−1
q=0

with spectral matrix measure[Γk,j(ds)].
Consider the problem of optimal linear estimation of the functionalA~ξ =

∑∞
j=0 ~a(j)~ξ(j) which

depends on the unknown values of a multidimensional stationary sequence~ξ(j) = {ξk(j)}T
k=1

with the spectral density matrixF (λ) = {fkl(λ)}T
k,l=1 from observations of the sequence~ξ(n) +

~η(n) for n < 0, where~η(n) = {ηk(n)}T
k=1 is uncorrelated with~η(n) multidimensional stationary

sequence with the spectral density matrixG(λ) = {gkl(λ)}T
k,l=1.

Let the vector sequence~a(j), which determines the functionalA~ξ, satisfies conditions

∞∑
j=0

T∑
k=1

|ak(j)| <∞,
∞∑

j=0

(j + 1)
T∑

k=1

|ak(j)|2 <∞. (8)
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and let the spectral densitiesF (λ) = {fkl(λ)}T
k,l=1 andG(λ) = {gkl(λ)}T

k,l=1 satisfy the mini-
mality condition

π∫
−π

Tr
[
(F (λ) +G(λ))−1

]
dλ < ∞. (9)

Denote byL2 (F ) the Hilbert space of vector-valued functionsϕ(λ) = {ϕk(λ)}T
k=1 integrable

with respect to a measure with the densityF (λ) = {fkl(λ)}T
k,l=1:

π∫
−π

ϕ(λ)F (λ)ϕ∗(λ)dλ

=

π∫
−π

T∑
k,l=1

ϕk(λ)ϕl (λ) fkl(λ)dλ <∞.

Denote byL−2 (F ) the subspace inL2(F ) generated by functionseijλδk, δk = {δkl}T
l=1, k =

1, T , j ∈ Z, j < 0, whereδkk = 1, δkl = 0 for k 6= l.
A linear estimateÂ~ξ of the functionalA~ξ from observations of the sequence~ξ(j) + ~η(j) for

j < 0 has the form

Â~ξ =

π∫
−π

h(eiλ) (Zξ(dλ) + Zη(dλ))

=

π∫
−π

T∑
k=1

hk(eiλ)(Zξ
k(dλ) + Zη

k (dλ)),

whereZξ(∆) =
{
Zξ

k(∆)
}T

k=1
andZη(∆) =

{
Zη

k (∆)
}T

k=1
are orthogonal random measures of

the sequences~ξ(j) and~η(j) correspondingly, andh(λ) = {hk(λ)}T
k=1 is the spectral characteristic

of the estimatêA~ξ. The functionh(eiλ) ∈ L−2 (F +G).
The mean square error∆(h;F,G) of the estimatêA~ξ is calculated by the formulae

∆(h;F,G) = E
∣∣∣A~ξ − Â~ξ

∣∣∣2 =

=
1
2π

π∫
−π

[
A(eiλ)− h(eiλ)

]
F (λ)

[
A(eiλ)− h∗(eiλ)

]
dλ+

+
1
2π

π∫
−π

h(eiλ)G(λ)h∗(eiλ)dλ, A(eiλ) =
∞∑

j=0

~a(j)eijλ.

The spectral characteristich(F,G) of the optimal linear estimate ofA~ξ minimizes the mean square
error

∆(F,G) = ∆(h(F,G);F,G)

= min
h∈L−2 (F+G)

∆(h;F,G) = min
Â~ξ

E
∣∣∣A~ξ − Â~ξ

∣∣∣2. (10)
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The optimal estimatêA~ξ is a solution of the optimization problem (10). With the help of the
Hilbert space projection method proposed by A.N.Kolmogorov we can find that

h(F,G) =
[
A(eiλ)F (λ)− C(eiλ)

]
[F (λ) +G(λ)]−1

= A(eiλ)−
[
A(eiλ)G(λ) + C(eiλ)

]
[F (λ) +G(λ)]−1 , (11)

∆(F,G) =
1
2π

π∫
−π

[
A(eiλ)G(λ) + C(eiλ)

]
[F (λ) +G(λ)]−1×

F (λ) [F (λ) +G(λ)]−1
[
A(eiλ)G(λ) + C(eiλ)

]∗
dλ+

1
2π

π∫
−π

[
A(eiλ)F (λ)− C(eiλ)

]
[F (λ) +G(λ)]−1×

×G(λ) [F (λ) +G(λ)]−1
[
A(eiλ)G(λ) + C(eiλ)

]∗
dλ =

= 〈~c , B~c〉+ 〈~a , R~a〉, (12)

where

C(eiλ) =
∞∑

j=0

~c(j)eijλ,~c = {~c(k)}∞k=0 = B−1D~a,

~a = {~a(k)}∞k=0, 〈a , b〉 is the scalar product;B , D , R are matrices composed with block-
matrices of dimensionT × T :

B(k , j) =
1

(2π)T

π∫
−π

[
(F (λ) +G(λ))−1

]T
ei(j−k)λdλ,

D(k , j) =
1

(2π)T

π∫
−π

[
F (λ) (F (λ) +G(λ))−1

]T
ei(j−k)λdλ,

R(k , j) =
1

(2π)T

π∫
−π

[
F (λ) (F (λ) +G(λ))−1G(λ)

]T
ei(j−k)λdλ,

k, j = 0, 1, . . . .

Theorem 1. Let ~ξ(j) = {ξk(j)}T
k=1 , ~η(j) = {ηk(j)}T

k=1 be uncorrelated stationary stochastic
sequences with densitiesF (λ) = {fkl(λ)}T

k,l=1, G(λ) = {gkl(λ)}T
k,l=1, which satisfy the mini-

mality condition (9). The spectral characteristicsh(F,G) and the mean square error∆(F,G) of
the optimal linear estimate of the functionalA~ξ on the unknown values of the sequence~ξ(j) based
on observations of the sequence~ξ(n) + ~η(n), n < 0, are calculated by the formulas (11), (12).
Corollary 1. Let ~ξ(j) = {ξk(j)}T

k=1 be a stationary stochastic sequence with the densityF (λ) =
{fkl(λ)}T

k,l=1, which satisfies the minimality condition

π∫
−π

Tr
[
(F (λ))−1

]
dλ < ∞.
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The spectral characteristicsh(F ) and the mean square error∆(F ) of the optimal linear estimate
of the functionalA~ξ on the unknown values of the sequence~ξ(j) based on observations of the
sequence~ξ(j), j < 0, are calculated by the formulas

h(F ) = A(eiλ) − C(eiλ) [F (λ)]−1, (13)

∆(F ) =
1
2π

π∫
−π

C(eiλ) [F (λ)]−1C∗(eiλ)dλ =

=
〈
B−1~a,~a

〉
, (14)

whereC(eiλ) =
∞∑

j=0
~c(j)eijλ, ~c = B−1~a, B is a matrix composed with block-matrices of dimen-

sionT × T :

B(k, j) =
1

(2π)T

π∫
−π

[
(F (λ))−1

]T
ei(j−k)λdλ,

k, j = 0, 1, . . .

Let the sequence~ξ(t) admits the canonical moving average representation

~ξ(j) =
j∑

u=−∞
d(j − u)~ε(u), (15)

whered(k) = {dij(k)}j=1,m

i=1,T
is a matrix function and~ε(u) = {εk(u)}m

k=1 is a multidimensional

stationary stochastic sequence with uncorrelated values (white noise):Eεk(u) = 0, E |εk(u)|2 =
1, k = 1,m, Eεi(t)εj(s) = 0, t 6= s. In this case the spectral density matrixF (λ) =
{fij(λ)}T

i,j=1 of the sequence~ξ(t) admits the canonical factorization:

F (λ) = ϕ(λ)ϕ∗(λ), ϕ(λ) =
∞∑

k=0

d(k)e−ikλ. (16)

If the sequence~ξ(t) admits the canonical moving average representation (15), then the optimal
estimate of the functionalA~ξ =

∑∞
j=0 ~a(j)~ξ(j) from observations of the sequence~ξ(n) for n < 0

is determined by the spectral characteristich(F ) ∈ L−2 (F ) that minimizes the mean square error

∆(h(F ), F ) = min
h∈L−2 (F )

∆(h, F ) = ‖Ad‖2 , (17)

where

‖Ad‖2 =
∞∑

k=0

‖(Ad)k‖2,

(Ad)k =
∞∑

l=k

~a(l)d(l − k).

Note, that‖Ad‖2 < ∞ under condition (1). The spectral characteristich(F ) is calculated by the
formula

h(F ) = A(eiλ)− r(eiλ)ψ(λ), (18)
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r(eiλ) =
∞∑

k=0

(Ad)ke
ikλ,

whereψ (λ) = {ψij(λ)}j=1,T

i=1,m
is a matrix function which satisfies the equation

ψ (λ)ϕ(λ) = Im,

Im is the identity matrix of orderm.
For the functionalAN

~ξ =
∑N

j=0 ~a(j)~ξ(j) the value of the mean square error and the spectral
characteristic of the optimal estimate are determined by the following formulas

∆N (h(F ), F ) = ‖ANd‖2 ; (19)

h(F ) = AN (eiλ)− rN (eiλ)ψ (λ), (20)

rN (eiλ) =
N∑

k=0

(ANd)ke
ikλ,

where

AN (eiλ) =
N∑

j=0

~a(j)eijλ, ‖ANd‖2 =
N∑

k=0

‖(ANd)k‖2,

(ANd)k =
N∑

l=k

~a(l)d(l − k), k = 0, N.

As a corollary we can get the following formulas for calculation the mean square error of the
optimal estimatêξk(j) of the unknown valuesξk(j), k = 1, T , j = 0, N :

E
∣∣∣ξk(j)− ξ̂k(j)

∣∣∣2 =
j∑

l=0

‖dk(l)‖2, (21)

wheredk(l) is thek-th row of the matrixd(l) determined by the factorization (16) of the spectral
density matrixF (λ).
Theorem 2. Let ~ξ(j) = {ξk(j)}T

k=1 , E
~ξ(j) = 0, be a stationary stochastic sequence that ad-

mits the canonical moving average representation (15) with the spectral density matrixF (λ) that
admits the canonical factorization (16) and let condition (8) be satisfied. The value of the mean-
square error∆(h(F ), F ) of the optimal linear estimate of the functionalA~ξ from observations of
the sequence~ξ(n) for n < 0 can be calculated by formula (17) (by formula (19) if the functional
AN

~ξ is estimated). The spectral characteristicsh(F ) of the optimal linear estimate can be calcu-
lated by formula (18) (by formula (20) if the functionalAN

~ξ is estimated).

4 Minimax-robust method of analysis.

The proposed formulas may be employed only under the condition that spectral densities of
stochastic sequences are known. In the case where the densitiesF (λ), G(λ) are not known
exactly, but a setD = DF × DG of possible spectral densities is given, the minimax (robust)
approach to estimation of functionals of the unknown values of stationary sequences is reason-
able. Instead of searching an estimate that is optimal for a given spectral densitiesF (λ) andG(λ)
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we find an estimate that minimizes the mean square error for all spectral densities from a given
class simultaneously.

Definition 2. For a given class of pairs of spectral densitiesD = DF ×DG spectral densities
F 0 (λ) ∈ DF , G

0 (λ) ∈ DG are called the least favorable inD = DF × DG for the optimal
linear estimation of the functionalA~ξ if the following relations holds true:

∆
(
F 0, G0

)
= ∆

(
h
(
F 0, G0

)
;F 0, G0

)
= max

(F,G)∈D
∆ (h (F,G) ;F,G) .

Definition 3. For a given class of pairs of spectral densitiesD = DF × DG the spectral
characteristich0 (λ) of the optimal linear estimate of the functionalA~ξ is called minimax (robust)
if

h0 (λ) ∈ HD = ∩
(F,G)∈D

L−2 (F +G) ,

min
h∈HD

max
(F,G)∈D

∆ (h;F,G) = max
(F,G)∈D

∆
(
h0;F,G

)
.

Lemma 1.Spectral densitiesF 0 (λ) , G0 (λ) are the least favorable inD = DF ×DG for the
optimal linear estimation of the functionalA~ξ, if the Fourier coefficients of the matrix functions

(F 0(λ) +G0(λ))−1,

F 0(λ)(F 0(λ) +G0(λ))−1,

F 0(λ)(F 0(λ) +G0(λ))−1G0(λ)

determine the matricesB0,D0,R0, which give a solution to the extremum problem

max
(F,G)∈D

〈
B−1D~a,D~a

〉
+ 〈~a,R~a〉 =

=
〈
(B0)−1D0~a,D0~a

〉
+
〈
~a,R0~a

〉
. (22)

Minimax spectral characteristicsh0 = h(F 0, G0) is calculated by formula (11) if the condition
h(F 0, G0) ∈ HD holds true.

The least favorable spectral densitiesF 0 (λ) , G0 (λ) and the minimax (robust) spectral char-
acteristicsh0 = h

(
F 0, G0

)
form a saddle point of the function∆ (h; F, G) on the setHD ×D.

The saddle point inequalities

∆
(
h0;F,G

)
≤ ∆

(
h0;F 0, G0

)
≤ ∆

(
h;F 0, G0

)
∀h ∈ HD ∀F ∈ DF ∀G ∈ DG

hold whenh0 = h(F 0, G0), h
(
F 0, G0

)
∈ HD and

(
F 0, G0

)
is a solution to the conditional

extremum problem

sup
(F,G)∈D

∆
(
h
(
F 0, G0

)
;F,G

)
= ∆

(
h
(
F 0, G0

)
;F 0, G0

)
, (23)

∆
(
h
(
F 0, G0

)
;F,G

)
=

=
1
2π

π∫
−π

(A(eiλ)G0(λ) + C0(eiλ)) (F 0(λ) +G0(λ))−1 F (λ)×



M. Moklyachuk - Robust prediction problem for periodically 60

(F 0(λ) +G0(λ))−1(A(eiλ)G0(λ) + C0
N (eiλ))∗dλ

+
1
2π

π∫
−π

(A(eiλ)F 0(λ)− C0(eiλ))(F 0(λ) +G0(λ))−1×

×G(λ) (F 0(λ) +G0(λ))−1(A(eiλ)G0(λ) + C0(eiλ))∗dλ.

Lemma 2. Let
(
F 0, G0

)
be a solution to extremum problem (22). Spectral densitiesF 0 (λ) , G0 (λ)

are the least favorable in the classD = DF ×DG, vh0 = h(F 0, G0) is minimax for the optimal
estimate ofA~ξ, if h(F 0, G0) ∈ HD.

Taking into account relations (1)–(16), it is possible to verify the following lemmas.
Lemma 3. The spectral density matrixF 0(λ) ∈ D is the least favorable in the classD for the
optimal linear estimation of the functionalA~ξ from observations of the sequence~ξ(j) for j < 0 if
F 0(λ) admits the canonical factorization

F 0(λ) =

( ∞∑
k=0

d0(k)e−ikλ

)
·

( ∞∑
k=0

d0(k)e−ikλ

)∗
, (24)

whered0 =
{
d0(k) : k = 0, 1, . . .

}
is a solution to the conditional extremum problem

‖Ad‖2 → max, (25)

F (λ) =

( ∞∑
k=0

d(k)e−ikλ

)
·

( ∞∑
k=0

d(k)e−ikλ

)∗
∈ D.

The sequence~ξ(j) in this case admits the canonical moving average representation

~ξ(j) =
j∑

u=−∞
d(j − u)~ε(u). (26)

The minimax spectral characteristich0 = h(F 0) of the optimal estimate of the functional is cal-
culated by the formula (18) under the conditionh(F 0) ∈ HD.

Lemma 4. The spectral densityF 0(λ) ∈ D is the least favorable in the classD for the optimal
linear estimation of the functionalAN

~ξ from observations of the sequence~ξ(j) for j < 0 if F 0(λ)
admits the canonical factorization

F 0(λ) =

(
N∑

k=0

d0(k)e−ikλ

)
·

(
N∑

k=0

d0(k)e−ikλ

)∗
, (27)

whered0 =
{
d0(k) : 0 ≤ k ≤ N

}
is a solution to the conditional extremum problem

‖ANd‖2 → max, (28)

F (λ) =

(
N∑

k=0

d(k)e−ikλ

)
·

(
N∑

k=0

d(k)e−ikλ

)∗
∈ D.
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The sequence~ξ(j) in this case admits the canonical moving average representation of the order
N :

~ξ(j) =
j∑

u=j−N

d(j − u)~ε(u). (29)

The minimax spectral characteristicsh0 = h(F 0) of the optimal estimate of the functional is cal-
culated by the formula (20) under the conditionh(F 0) ∈ HD.

5 Least favorable spectral densities in the classD0.

Consider the problem for the set of spectral density matrices

D0 =

F (λ) :
1

(2π)T

π∫
−π

F (λ)dλ = P

 .

With the help of the Lagrange multipliers method we can find that solutions to the conditional
extremum problem (23) that determine the least favorable density matrixF 0(λ) ∈ D0 of the
maximal rank is of the form

F 0(λ) = ~β (
∞∑

k=0

(Ad)ke
ikλ) · (

∞∑
k=0

(Ad)ke
ikλ)

∗ ~β∗. (30)

The unknown~β = (β1, . . . , βT )T , d = {d(k) : k = 0, 1, . . .} are determined by the canonical
factorization (16) of the density matrixF 0(λ), condition (25) and the condition

1
(2π)T

π∫
−π

F (λ)dλ = P . (31)

For solutionsd = {d(k) : k = 0, 1, . . .} to the system of equations

(Ad)k = ~cd∗(k), k ≥ 0, ~c = (c1, . . . , cT ), (32)

such that

‖d‖2 =
∞∑

k=0

‖d(k)‖2 =
∞∑

k=0

∑
i,j

|dij(k)|2 = P ,

the following equality holds true

F (λ) = (
∞∑

k=0

d(k)e−ikλ)(
∞∑

k=0

d(k)e−ikλ)∗ =

~β(
∞∑

k=0

(Ad)ke
ikλ)(

∞∑
k=0

(Ad)ke
ikλ)∗~β∗.

Denote byνP
0 the maximal value of‖Ad‖2, whered are solutions to equation (32), that satisfy

condition (31) and determine the canonical factorization (16) of the density matrixF (λ), F (λ) ∈
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D0. Denote byµP
0 the maximal value of‖Ad‖2, whered, ‖d‖2 = P, determine the canonical

factorization (16) of the density matrixF 0(λ) of the form (30). If there exists a solutiond0 to the
equation (22) such that

∥∥d0
∥∥2 = P andνP

0 = µP
0 =

∥∥Ad0
∥∥2

, then the least favorable inD0 is the
density matrix

F 0(λ) = (
∞∑

k=0

d0(k)e−ikλ) · (
∞∑

k=0

d0(k)e−ikλ)∗. (33)

The stationary sequence~ξ(j) in this case admits the moving average representation (26). The
minimax (robust) spectral characteristic of the optimal linear estimate of the functionalA~ξ is
calculated by formula (18) since the functionsA(λ) andr(λ) are bounded andh(F 0) ∈ HD.

The following theorem holds true.

Theorem 3. If there exists a solution

d0 =
{
d0(k) : k = 0, 1, . . .

}
to the equation (32) that satisfy condition (31) and such thatνP

0 = µP
0 =

∥∥Ad0
∥∥2

, then the least

favorable inD0 for the optimal linear estimation of the functionalA~ξ is the density matrix (33).
The corresponding stationary sequence~ξ(j) in this case admits the moving average representa-
tion (26). IfνP

0 < µP
0 , then the density matrix (30), that admits the canonical factorization (33),

is the least favorable inD0. The vector~β and the sequenced0 =
{
d0(k) : k = 0, 1, . . .

}
are

determined by conditions (25), (31). The minimax spectral characteristicsh(F ) of the optimal
linear estimate is calculated by formula (18).

For the functionalAN
~ξ the density matrix (16) is of the form

F 0(λ) = ~β (
N∑

k=0

(ANd)ke
ikλ) · (

N∑
k=0

(ANd)ke
ikλ)

∗ ~β∗ (34)

In this case the equality holds true

rN (eiλ)rN (eiλ)∗ = (
N∑

k=0

(ANd)ke
ikλ)(

N∑
k=0

(ANd)ke
ikλ)∗ =

= (
N∑

k=0

(ÃNd)ke
ikλ)(

N∑
k=0

(ÃNd)ke
ikλ)∗,

where

(ÃNd)k =
k∑

u=0

~a(N − k + u)d(u), 0 ≤ k ≤ N.

For these reason all solutionsd = {d(k) : 0 ≤ k ≤ N} to equations

(ANd)k = ~cd(k)∗, 0 ≤ k ≤ N,~c = (c1, . . . , cT ); (35)

(ÃNd)k = ~bd(k)∗, 0 ≤ k ≤ N,~b = (b1, . . . , bT ), (36)



M. Moklyachuk - Robust prediction problem for periodically 63

such that‖d‖2 = P the equality holds true

F (λ) = (
N∑

k=0

d(k)e−ikλ)(
N∑

k=0

d(k)e−ikλ)∗

= ~β rN (eiλ)rN (eiλ)∗~β∗.

Denote byνNP
0 the maximal value of‖ANd‖2 =

∥∥∥ÃNd
∥∥∥2

, whered are solutions to equations

(35), (36) that satisfy condition (31) and determine the canonical factorization (16) of the density
matrixF 0(λ). Denote byµLP

0 the maximal value of‖ANd‖2, whered satisfy condition (31) and
determine the canonical factorization (16) of the density matrixF 0(λ) with F 0(λ) of the form
(34). If there exists a solutiond0 to equation (35), or equation (36), that satisfy condition (31) and
such that

∥∥d0
∥∥2 = P andνLP

0 = µLP
0 =

∥∥ANd
0
∥∥2

, then the least favorable inD0 is the density
matrix

F 0(λ) = (
N∑

k=0

d0(k)e−ikλ)(
N∑

k=0

d0(k)e−ikλ)∗. (37)

The stationary sequence~ξ(j) in this case admits the moving average representation (29).
The following theorem holds true.

Theorem 4. If there exists a sequence

d0 =
{
d0(k) : k = 0, 1, . . . , N

}
that satisfy condition

∥∥d0
∥∥2 = P and such thatνLP

0 = µLP
0 =

∥∥ALd
0
∥∥2
, then the least favorable

inD0 for the optimal linear estimation of the functionalAN
~ξ is the density matrix (37). The corre-

sponding stationary sequence~ξ(j) in this case admits the moving average representation (29). If
νLP
0 < µLP

0 , then the density matrix (34), that admits the canonical factorization (27), is the least
favorable inD0. The vector~β and the sequenced0 =

{
d0(k) : k = 0, 1, . . . , N

}
are determined

by conditions (28), (31). The minimax spectral characteristicsh(F ) of the optimal linear estimate
of the functionalAL

~ξ is calculated by formula (20).

6 Conclusion.

We propose formulas for calculation the mean square error and the spectral characteristic of the
optimal linear prediction of the unknown value of the functionalAξ =

∑∞
j=0 ~a(j)~ξ(j) which

depends on the unknown values of a multidimensional stationary stochastic process~ξ(j) from
observations of the process~ξ(n) + ~η(n) for n = −1,−2, . . . under the condition that spectral
density matricesF (λ) andG(λ) of the signal process~ξ(n) and the noise process~η(n) are known.
Formulas are proposed that determine the least favorable spectral densities and the minimax-
robust spectral characteristics of the optimal linear prediction of the functional for concrete classes
D = DF ×DG of spectral densities under the condition that spectral density matricesF (λ), G(λ)
are not known, but classesD = DF ×DG of admissible spectral densities are given. These formu-
las give us a possibility to solve the corresponding estimation problem for periodically correlated
(cyclostationary) discrete time stochastic processes.
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Abstract

We estimate the difference between barrier option prices in a continuous time market
model and in a discrete time binomial market model. As an auxilliary result, we estimate the
difference between barrier option prices in a continuous time market and in a discrete time
Gaussian market.

1 Introduction

A barrier option is a derivative with a payoff that depends on the fact whether asset price crosses
certain level during certain time interval. Thus, payment for barrier option depends on the behavior
of the price asset during all the time interval, i.e. barrier option is a particular case of exotic option.

The simplest barrier options are calls and puts that are knocked out or knocked in by the
underlying asset itself. The payoff of a knock-out option is made if underlying asset price does
not cross the barrier, such options are of two types: if asset price does not cross the barrier below,
then such an option is called “up-and-out”, if from above – “down-and-out”. Payoff of a knock-in
option is made if underlying asset price crosses the barrier, they also are of two types accordingly:
“up-and-in” and “down-and-in”. Altogether there are eight types of barrier options.

For example, the payoff function of up-and-in option is given by

C =
{

(ST −K)+, if max0≤t≤T St ≥ H,
0 else,

whereH is a barrier level (H > S0 andH > K), K is a strike price. Payoffs for the rest options
are determined in the same way. Barrier options are among the most popular path-dependent
option traded in exchanges worldwide and also over-the-counter markets.

The problem of pricing and hedging barrier option in the models with continuous time is
rather complete, and analytical formulae for the prices of such options are known only in the
simplest cases. Therefore the problem of asymptotic estimation of the prices of such options arises.
The simplest asymptotic methods is the method of time discretization, which can be described in
the following way. Time interval is divided intom equal parts and now the asset price model

66
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with discrete time is considered. In such a formulation we can approximately calculate option
price using Monte Carlo simulations, modelling the path of the underlying asset price. From the
other side, the opposite problem could arise: let we have analytical formula for option price in
continuous time model. Then the demand may come to estimate the price of the option with
payoff realized when the asset price crosses the barrier level, and this price is observed only in
certain time moments (for example, daily when stock exchange is closing).

From the practical point of view, when we approximately estimate the price of the option it is
important to know the quality of such an estimation, i.e. the order of the error.

In [1] authors introduce a simple continuity correction for approximate pricing of discrete
barrier option. Their method uses formulae for the prices of continuous barrier options but shifts
the barrier to correct for discrete monitoring. Compared with using the unadjusted continuous
price, their formula reduces the error fromO( 1√

m
) to o( 1√

m
), as the number of monitoring points

m increases. The correction is justified both theoretically and experimentally.

Theorem 1.1. [1] Let V (H) be the price of a continuously monitored knock-in or knock-out down
call or put with barrierH, and letVm(H) be the price of the corresponding discrete monitored
barrier option. Then

Vm(H) = V (He±βσ
√

T/m) + o(
1√
m

),

where+ applies ifH > S0, and− applies ifH < S0, β = −ζ(1/2)/
√

2π ≈ 0.5826, with ζ the
Riemann zeta function.

The paper [6] extends an approximation by Broadie et al. in [1] for discretely monitored
barrier options by covering more cases and giving a simpler proof. The paper [4] also continues
the work of Broadie and determine formulae to estimate the price of discrete up-and-out/in calls,
down-and-out/in puts and double barrier option. The methods used here lead to slightly different
barrier correction formulae. In [2] the rate of convergence for lookback options and other exotic
options is obtained.

The model considered in [8] investigates the rate of convergence of option price in discrete
market, but this price is not fair in the sense that it might be not unique. Discrete market, generated
by the increments of geometric Brownian motion, is not complete, so there are many “fair prices”.
Thus it would be better to have result for convergence of the unique price in complete market. That
because in our work we consider discrete binomial market and investigate the rate of convergence
of fair price of barrier option in such market to correspondent price on continuous market. We
have proved that the rate of convergence isO(lnn/

√
n), wheren is the number of periods in the

binomial market.

2 Main result

Let (Ω,F, P ) be a complete probability space with filtration{Ft, t ≥ 0}, {Wt, t ≥ 0} is standard
Ft-Brownian motion on it. Consider Black–Scholes financial market model, where we have two
assets: riskless (bond), whose price at the momentt equals

Bt = B0 exp
{∫ t

0
rsds

}
,
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and a risky asset (stock), whose price is

St = S0 exp
{∫ t

0
µsds + σWt

}
,

whereWt is standard Brownian motion defined before. Volatilityσ > 0 is assumed to be constant.
For simplicity, we assume thatP itself is a martingale measure for discounting process of risky
asset price, i.e.µt = rt − σ2/2.

Besides, we demand the interest ratert to be Lipschitz continuous, i.e. for everyt, s ∈ [0, T ]

|rt − rs| ≤ C|t− s|, (2.1)

whereC is a constant.

In the market with continuous time the fair option price is defined as the expectation of dis-
counting payoff for the option given martingale measure. LetIA denote the indicator of an event
A, MT = max {St, t ∈ [0, T ]}, mt = min {St, t ∈ [0, T ]}. Then, for instance, European up-and-
out call option price is given by

V (H) = E

(
exp

{
−

∫ T

0
rtdt

}
(ST −K)+I{MT <H}

)
,

whereK > 0 is a strike price,H > S0 is a barrier, and European down-and-in put option price is
given by

V (H) = E

(
exp

{
−

∫ T

0
rtdt

}
(K − ST )+I{mT≤H}

)
,

whereH < S0 is a barrier. In Merton’s paper [7] an explicit form for the price of knock-out call
option is established, when the risk-neutral interest rater is constant.

Now consider a binomial market model with discrete time, which is constructed as follows.
Divide time interval[0, T ] into n ≥ 1 parts, define∆ = T

n , ti = i∆, i = 0, . . . , n. Let ξi,
i = 0, . . . , n− 1 be independent identically distributed random variables, such thatP (ξi = 1) =
P (ξi = −1) = 1

2 . The risky asset price in the binomial market model is defined as

Sb
ti = S0 exp

{ i−1∑
j=0

(µj∆ + σξj

√
∆)

}
, i = 1, . . . , n;

on [ti, ti+1) we putSb
t = Sb

ti , and set the interest rate to be equal torti . Instead of Brownian
motion, the role of “random driver” of financial market in the binomial model is played by a
random walk{Ξi}, defined as

Ξi :=
i−1∑
j=0

ξj .

An analogue of European up-and-out call option in the binomial model has the payoff function
(Sb

T −K)+I{Mb
T <H}, consequently, the price is

V b
n (H) = E

(
exp

{
−

n−1∑
i=0

rti∆
}

(Sb
T −K)+I{Mb

T <H}

)
,
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whereM b
T = max0≤i≤n Sb

ti = maxt∈[0,T ] S
b
t .

The following is the main result about convergence of price in binomial model to the one in
continuous model.

Theorem 2.1. The difference of European up-and-out call options fair prices in discrete binomial
and continuous models under the assumption(2.1)satisfies

V (H)− V b
n (H) = O

( lnn√
n

)
, n →∞.

In order to prove this result, we will use another approximation result for convergence of
European up-and-out call options fair prices in discrete and continuous models.

In the discrete time market define a discretized version ofS:

Sd
ti = S0 exp

{ i−1∑
j=0

(µj∆ + σZj

√
∆)

}
, i = 1, . . . , n,

whereZj = (Wtj+1 − Wtj )/
√

∆, and consider European up-and-out call option with a payoff
(Sd

T −K)+I{Md
T <H}, whereMd

T = max0≤i≤n Sd
ti . Its fair price is

V d
n (H) = E

(
exp

{
−

n−1∑
i=0

rti∆
}

(Sd
T −K)+I{Md

T <H}

)
.

Theorem 2.2. The difference of European up-and-out call options fair prices in discrete and
continuous models under the assumption(2.1)satisfies

Vn(H)− V (H) = O
( 1√

n

)
, n →∞.

We prove theorem 2.2 first.

Proof. In the followingC will denote a generic positive constant, which may depend only onσ,
the Lipschitz continuity parameter ofrt, H, K, S0, i.e. the inputs of our problem.

Whereas joint distribution of∆W1, . . . ,∆Wm is same as ofWt1 , . . . , Wtm , we can suppose
thatWn = Wtn , it makes our calculations easier.

For any processY (t) defineτ(x, Y ) := inf{t ≥ 0 : Y (t) ≥ x}, i.e. τ(H,S) = τH is the first
momentt, in whichSt reaches the levelH, andτ(H,Sn) = τn

H is the first momentti, in which
Sd

ti reaches the levelH.

Consider the difference of European up-and-out call options fair prices in discrete and contin-
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uous models to find the rate of convergence of their prices in the models.

Vn(H)− V (H) = exp
{
−

n−1∑
i=0

rti∆
}

E
((

(Sd
n −K)+ − (ST −K)+

)
I{τn

H>T}

)
+

exp
{
−

n−1∑
i=0

rti∆
}

E
(
(ST −K)+

(
I{τn

H>T} − I{τH>T}
))

+

E
(
(ST −K)+I{τn

H>T}
)(

exp
{
−

n−1∑
i=0

rti∆
}
− exp

{
−

∫ T

0
rtdt

})
=

δn
1 + exp

{
−

n−1∑
i=0

rti∆
}

E
(
(ST −K)+

(
I{τn

H>T} − I{τH>T}
))

+ δn
2 ,

where, using the assumption about the functionr,

|δn
2 | ≤ (H −K)


(

exp
{
−

∫ T

0
rtdt

}
− exp

{
−

n−1∑
i=0

rti∆
})

P (τn
H > T )

 ≤
C

exp
{
−

∫ T

0
rtdt +

m−1∑
i=0

rti∆
}
− 1

 .

For anyx inequality|ex − 1| ≤ |x|e|x| is true. So, we obtain

|δn
2 | ≤ C

∣∣∣∣− ∫ T

0
rtdt +

n−1∑
i=0

rti∆
∣∣∣∣ ≤ C

∣∣∣∣ n−1∑
i=0

∫ ti+1

ti

(rt − rti)dt

∣∣∣∣ ≤
C

n−1∑
i=0

∫ ti+1

ti

|rt − rti | dt ≤ C∆ ≤ C
√

∆.

To estimate the value ofδn
1 we should notice thatS is a solution of stochastic differential

equationdSt = rtdt + σdWt, andSd
n is Euler approximation for the valueST of such a solution.

Then, using well known estimation for mathematical expectation of their difference (see, for ex.,
[9]) and whereasr is bounded, we have that

|δn
1 | ≤ CE

∣∣∣ST − Sd
n

∣∣∣ ≤ C
√

∆.

Therefore we obtain

|V d
n (H)− V (H)| ≤ C

E
(
(H −K)

(
I{τn

H>T} − I{τH>T}
)) + C

√
∆ =

C
∣∣∣E(

I{τn
H>T} − I{τH>T}

)∣∣∣ + C
√

∆.

To estimate the first item, we will use the Girsanov formula. For this we will need the following
notation. For a bounded measurable functiong : [0, T ] → R defineWt(g) = Wt +

∫ t
0

g(s)
σ ds is

Brownian motion with the driftg/σ,

E(g) = exp
{
−

∫ T

0

g(s)
σ

dWs −
1
2

∫ T

0

g2(s)
σ2

ds
}
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is the density of the martingale measureP g for W (g), Eg(·) = E(E(g)·) is the mathematical
expectation given this measure; for the processX we denote

X∗ = sup
[0,T ]

Xt, X
∗
n = max

1≤i≤n
Xti ;

and also denote

µn
t =

n∑
i=1

µtiIt∈[ti,ti+1), L =
1
σ

ln(H/S0), S′n = max
1≤i≤n

Sd
i .

According to the Girsanov theoremW (g) andE−1(g) have the same joint distributions with
respect toP g, the same asW andE(−g) have with respect toP . So, we can write∣∣∣E(

I{τn
H>T} − I{τH>T}

)∣∣∣ =
∣∣E(I{S∗≥H})− E(I{S′

n≥H})
∣∣ =∣∣Eµ

(
E−1(µ)I{(W (µ))∗≥L}

)
− Eµn(

E−1(µn)I{(W (µn))∗n≥L}
)∣∣ =∣∣E(

E(−µ)I{W ∗≥L}
)
− E

(
E(−µn)I{W ∗

n≥L}
)∣∣ ≤

E
(
|E(−µ)− E(−µn)| I{W ∗≥L}

)
+ E

(
E(−µn)

∣∣I{W ∗≥L} − I{W ∗
n≥L}

∣∣ )
= εn

1 + εn
2 .

We estimate the first item. Let us mention thatE(−µ) is the value of the solution of stochastic
differential equationdXt = µ

σdWt, andE(−µn) is the vlaue of Euler approximation for it, so by
using the standard estimate mentioned above we obtain that

εn
1 ≤ E

(
|E(−µ)− E(−µn)|

)
≤ C

√
∆.

To estimateεn
2 at once, we note thatI{W ∗≥L}−I{W ∗

n≥L} = I{W ∗≥L,W ∗
n<L}, i.e. for estimating

mathematical expectation we can suppose thatWti is bounded from above by some constantL.
Adding up the terms forE(−µn), we obtain∫ T

0

µn
t

σ
dWt =

1
σ

n−1∑
i=0

µti(Wti+1 −Wti) =

1
σ

(
µtn−1Wtn −

n−1∑
i=1

Wti(µti − µti−1)
)
,

whence, using Lipschitz condition forµ, we can write

εn
2 ≤ CE

(
exp{C sup

1≤i≤n
(Wti)−}I{W ∗≥L,W ∗

n<L}
)
,

herex− = −min{x, 0}. DenoteZ = sup1≤i≤n(Wti)−. Random variablesAn = {W ∗ ≥
L,W ∗

n < L} andBx =
{
sup1≤i≤n(Wti)− > x

}
are negatively correlated. We can be convinced

in it directly, writing simultaneous densities of the distributionWti , i = 1, . . . , n andW ∗. But
intuitively it is obvious, if we look at conditional probabilities of this values givenW ∗

n = y,
y ∈ (x, L) than for everyy their negative correlation is obvious.
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Writing now

E
(
eCZIA

)
= E

((
1 +

∫ ∞

0
CeCxI{Z>x}dx

)
IAn

)
= P (An) + C

∫ ∞

0
eCxP ({Z > x} ∩An)dx ≤

P (An) + C

∫ ∞

0
eCxP (Bx)P (An)dx = P (An)E(eCZ) ≤ CP (An).

Finally we note that one of the result of the paper [2] contains the fact thatP (An) ∼ C
√

∆
whenn →∞, henceεn

2 ≤ C
√

∆.

So, we have ∣∣∣V d
n (H)− V (H)

∣∣∣ ≤ C∆ = O
( 1√

n

)
.

We can prove theorem 2.1 using the result of theorem 2.2 .

Proof. Taking into account the result of theorem 2.2, it is enough to prove thatV d
n (H)−V b

n (H) =
O(lnn/

√
n), n →∞.

It is clear that

|V d
n (H)− V b

n (H)| ≤ C
∣∣∣E(

(Sd
T −K)+I{Md

T <H}
)
− E

(
(Sb

T −K)+I{Mb
T <H}

)∣∣∣ . (2.2)

Now we apply the result of Komlós, Major and Tusńady [5]. It says that for any givenλ > 0
it is possible to construct independent random variablesηi

d= ξi and independent standard random
variablesζi, 0 ≤ i ≤ n− 1, such that for some positive constantsK

P
(

max
0≤i≤n−1

|Si − Ti| > K lnn + x
)
≤ Ke−λx, (2.3)

where

Si =
i∑

j=0

ηj , Ti =
i∑

j=0

ζj .

Note that (2.3) impliesE(max0≤i≤n−1 |Si−Ti|2) ≤ C ln2 n. Indeed, denotingR = max0≤i≤n−1 |Si−
Ti|, we have

E(R2) ≤ (2K + 2)2 ln2 n + E(R2I{R>(2K+2) ln n})

≤ C ln2 n +
∫ ∞

0
P (R2 > (2K + 2)2 ln2 n + x)dx

≤ C ln2 n +
∫ ∞

0
P (R > (K + 1) ln n + x/2)dx

≤ C ln2 n + Kn−λ

∫ ∞

0
e−λ

√
x/2dx ≤ C ln2 n.
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In the following we will assume without loss of generalityKλ > 1/2.

As long as{ξi, i = 0, . . . , n − 1} d= {ηi, i = 0, . . . , n − 1} and{Zi, i = 0, . . . , n − 1} d=
{ζi, i = 0, . . . , n− 1}, in order to estimate the difference|V d

n (H)− V b
n (H)| we can assume that

ξi = ηi andZi = ζi, because this will not change the expectations in (2.2). Now write

|V d
n (H)− V b

n (H)| ≤ C(I1 + I2),

where

I1 =
∣∣E([(Sd

T −K)+ − (Sb
T −K)+]I{Mb

T <H})
∣∣

≤ E(|(Sd
T −K)+ − (Sb

T −K)+|I{Mb
T <H}) ≤ E(|Sd

T − Sb
T |I{Mb

T <H}),

I2 =
∣∣E((Sd

T −K)+[I{Md
T <H} − I{Mb

T <H}])
∣∣

≤ CE
(
|I{Md

T <H} − I{Mb
T <H}|

)
≤ C

(
P (Md

T < H, M b
T ≥ H) + P (Md

T ≥ H,M b
T < H)

)
.

ProcessesSd andSb are of the formS0e
x, hence from inequality|ex− ey| ≤ (ex + ey)|x− y| we

obtain

I1 ≤ CE

(
|Sb

T + Sd
T |σ

√
∆

∣∣∣∣ n−1∑
j=0

(Zj − ξj)
∣∣∣∣I{Mb

T <H}

)
Using the Cauchy–Bunyakovsky inequality, we get:

I1 ≤ Cσ
√

∆
(
E(|Sd

T + Sb
T |2I{Mb

T <H})
)1/2 ×

(
E

[ n−1∑
j=0

(
Zj − ξj+l

)]2
)1/2

.

Now

E(|Sd
T + Sb

T |2I{Mb
T <H}) ≤ 2E

[(
(Sd

T )2 + (Sb
T )2

)
I{Mb

T <H}
]

≤ C
(
E(S0 exp{2CT + 2σTWT }) + H2

)
≤ C,

asexp{σTWT } is integrable, and|µt| is bounded. On the other hand, as it was pointed above,

E
[ n−1∑

j=0

(
Zj − ξj+l

)]2
≤ C ln2 n,

thus we have

I1 ≤ C
√

∆ lnn ≤ C
lnn√

n
.

Now turn toI2. Both probabilities are estimated in a similar manner, so we will estimate only the
first one. Write

P (Md
T < H,M b

m ≥ H)

≤ P (H − δ ≤ Md
T < H,M b

T ≥ H) + P (Md
T < H − δ,M b

T ≥ H)

≤ P (H − δ ≤ Md
T < H) + P (Md

T < H − δ,M b
T ≥ H) =: P1 + P2.
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It is easy to see thatMd
T has a bounded density, soP1 ≤ Cδ.

Now we observe thatP (Md
T < H−δ,M b

T ≥ H) implies that for somei Sd
T < H−δ < H ≤

Sb
T , so, by taking logarithms, we have

√
∆

i−1∑
j=0

(ξj − Zj) > Cδ,

which implies
i−1∑
j=0

(ξj − Zj) > Cδ
√

n.

Now takeδ = 2K lnn/
√

n. With this choice we have from (2.3)P2 ≤ Cn−λK ≤ C lnn/
√

n.
Summing up, we haveI2 ≤ C lnn/

√
n, and the assertion of the theorem follows.

3 Modelling

As in [8], we give an example showing how fast the price in discrete binomial model converges to
correspondent price in continuous model.

Consider the drift function of the form:

µt =

{
µ1, 0 ≤ t < T/2,

µ2, T/2 ≤ t ≤ T.

This function (and corresponding interest ratert) does not satisfy the condition of continuity (2.1),
which we have impose on it. But, if we track the proof process of the theorem 2.1, it is not difficult
to see, that it is enough to have the condition (2.1) fulfilling fort = ti, s ∈ [ti, ti+1), that is true
for such a function.

According to [3] we have that for Brownian motionXt with initial valuex and constant drift
coefficientµ simultaneous density of the distribution of maximumMt on interval[0, t], of the
pointsTt of the maximum and of the valuesXt is given by

P (Xt ∈ dz,Mt ∈ dy, Tt ∈ ds) =
(y − x)(y − z)
π
√

s3(t− s)3
×

exp
(
− (y − x)2

2s
− (y − z)2

2(t− s)
− µ(x− z)− µ2t

2

)
dz dy ds =: ft,x,µ(z, y, s)dz dy ds

whenx ≤ y andz ≤ y; whenx > y orz > y it equals to zero. Notingν(T ) = exp
{
−

∫ T
0 rtdt

}
=

exp
{
− T

2 (µ1 + µ2 + σ2)
}

and using the fact, thatZt = 1
σ lnSt is a Brownian motion with the

drift ν1 = µ1

σ on [0, T
2 ] andν2 = µ2

σ on [T
2 , T ], we can get the European up-and-out call option
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fair price as

V (H) = E

(
ν(T )(ST −K)+I{τ(H,S)>T}

)
= ν(T )E

(
(ST −K)+I{sup[0,T ] St<H}

)
=

ν(T )E
(
E

(
(ST −K)+I{

sup
[ T
2 ,T ]

St<H
} ∣∣ FT

2

)
I{

sup
[0, T

2 ]
St<H

})
=

ν(T )E
( ∫ T

2

0

∫ 1
σ

ln H

Z T
2

∫ y

−∞
(eσz −K)+fT

2
,Z T

2
,ν2

(z, y, s)dz dy ds I{
sup

[0, T
2 ]

St<H
})

=

ν(T )
∫ T

2

0

∫ 1
σ

ln H

Z0

∫ v

−∞
fT

2
,Z0,ν1

(x, v, u)×∫ T
2

0

∫ 1
σ

ln H

x

∫ y

−∞
(eσz −K)+fT

2
,x,ν2

(z, y, s)dz dy ds dx dv du.

The last integral is rather difficult to calculate because of its high dimension. Nevertheless, in-
tegrals iny andv can be evaluated in closed form, with the use of the standard normal distribution
function; we do not give the result of this integrating — formulae are very intricate — and give
only the final estimation for the integral.

Let take the following meanings of parameters:S0 = 100, σ = 0.1, K = 100, H = 105,
T = 0,2, µ1 = 0,1, µ2 = 0,2. Then with accuracy10−4

V (H) = 0,4744.

To estimate the order of the rate of convergence for the option prices with discrete time, using
Monte Carlo simulations for the estimation of mathematical expectation, we will generate100000
trajectories of asset price (50000 trajectories form = 1000, 2000). The results we have got are
noted in the table 1. We should note that the option prices with discrete time are bigger and
decreasing when size of partition increasing. This property is natural, because in the case when
the quantity of the points in our division increases, the moment set in which we examine does
asset price cross given level or not also increases. There is no clear evidence however from this
data whether our estimate for the rate of convergence is sharp. Nevertheless, we believe it is sharp,
because this rate is the best rate ofstrongapproximation of Wiener process by a binomial random
walk; but we cannot claim the sharpness, because our result concerns weak convergence.

4 Conclusions

We have proved that barrier option fair prices in discrete binomial Black–Scholes model with
non-constant drift coefficient converges to corresponding price in continuous model, and the rate
of convergence could be estimated asO( ln n√

n
), wheren is the number of operational moments in

the discrete binomial model.
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Abstract

We investigate the portfolio optimization problem using complex risk measures. In par-
ticular, we propose risk measures, composed of Value-at-Risk, Conditional Value-at-Risk,
average, standard deviation, average of absolute deviation and their modifications. We ana-
lyze the received portfolios, constructed from Russian and World stocks on the different time
horizons. The practical recommendations for described approaches are given. The results can
be compared with Basel-2.

Keywords.: optimal stocks portfolios; risk measures.

Portfolio optimization and risk measures

One of the main problems of financial analysis is the market risk measuring. We consider this
problem in the context of stocks portfolio optimization.

The foundations of modern investment theory were layd in 1952 by H. Markovitz. Risk obtained
mathematical definition in the investment theory, what made it possible to construct mathemati-
cal models of portfolio optimization problem. Then the risk of the portfolio was determined as
standard deviation. Since then appeared many approaches for risk measurement.

We define the daily (week, month etc.) portfolio profit as follows:

�� �
���� � ��

��
(1)

where �� - portfolio profit, �� - portfolio cost in the time moment �.
In the financial world nowadays Value-at-Risk (� ��) has become one of the most used and

important measures of risk. The � �� of the portfolio at the confidence level � � ��� �� is equal
to such value that the probability of the event ”profit X will not be less than � ��” is more than �:

� ������ � ������	�� � �� � �� (2)

The � �� has some undesirable features. The main is that � �� ignores the distribution of
portfolio returns beyond its � ��. That is, � �� ignores the magnitude of the worst cases.

In [4] a set of axioms was proposed as the key properties to be satisfied by ”coherent measure
of risk”:

�
 Monotonicity 	 if � � � then ���� � ��� �� (3)



 Positive homogeneity 	 if  � � then ���� � ����� (4)
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�
 Translational invariance 	 ��� � �� � ����� �� (5)


 Subadditivity: ��� � � � � ���� � ��� � (6)

The � �� is not a coherent measure of risk since it is not subadditive in general case. The
� �� of a portfolio with two stocks may be larger than the sum of the � ��s of the stocks in the
portfolio.

The alternative risk measure that overcomes the described features is the Conditional Value-at-
Risk (�� ��).

The �� �� is an expected value of portfolio profit � under the condition � � � ������.

�� ������ � ����� � � �������
 (7)

In other words, �� ������ is an average value of ��� �� � ���� of the smallest profits.
In [4] were proposed risk measures

� ����� � � ����� ������� (8)

�� ����� � �� ����� ������� (9)

where ���� is an average value.
We also analyse the following modifications of � �� and �� ��:

� ������ � � ����� ���������� (10)

�� ����� � �� ����� �������� (11)

where ����� is the median.
We propose new complex risk measures (CRM), integrating � ��, �� ��, standard deviation

and average of absolute deviation:

���� � �� ������� ���� ������� (12)

���� � � ������ � �� ������� ���� ������
 (13)

where � � �.

Method of research

The described risk measures were used for the stocks portfolio optimization. Russian, World
and mixed stocks portfolios were compared by the profitability for the following period. The
historical data includes up to 5 years of stocks costs On the Russian stock market we analyzed
stocks of the following companies: Sberbank, Gazprom, Norilskii Nikel, Aeroflot, Mosenergo,
MTS, Baltika, Salavatnefteorgsintez, GAZ. On the World stock market we analyzed the stocks
of companies General Electric, Microsoft, IBM, Citigroup, Pfizer, American International Group,
Bank of America, Johnson&Johnson, Wal-Mart Stores, Exxon Mobil.

Each of the risk measures was analyzed for the following parameters:
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- The dependence of optimal portfolio profit on parameter � for some measures;
- Analysis of diversification measures for optimal portfolios;
- The optimal portfolio structure and profit for different historical periods (from 1 month to 5

years).
We used the following method for portfolio optimization. On the first step we generate the

random portfolio i.e. the vector ���� ��� 
 
 
 � ���, �� � ��
��

��
�� � � where �� is the parth of

�-th company stocks in portfolio. We calculate the basic value of optimization criteria (one of the
described above risk measures). Then we increase by turn the part of each stock with �� � �

in a portfolio (accordingly we reduce parts �	 � �� � �� �) and define the best direction for
continuation of our calculations. The process continues while the improvement becomes less than
a defined level.

Then we repeat the generating of random portfolios (first step) until the necessary accuracy
level will be reached.

The efficient usage of the proposed risk measures requires the correct choice of parameter �.
We analyzed optimal portfolios for � � �� ��.

Some results of research

We investigated the dependence on coefficient � of optimal portfolio profit for measures ����
and ����. It was determined that for the high values of � (approximatly � � ��) the profit of
optimal portfolios becomes stable. That is, the further increasing of � will not influence on the
result of optimization. That is why we use � � ��.

We define a diversification measure of portfolio as the maximal stock parts in optimal portfolio.
The lower is diversification measure, the more diversified is portfolio.

The most diversified optimal portfolios were obtained for �� ���� risk measure.
The profit of optimal portfolios depends on the stock market situation. We observed the cases

when all the risk measures have got the positive profit and vice versa.
Let us analyse some examples.

Optimal portfolio profit, T=2 years
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Figure 1. Optimal portfolio profit, Russian stock market, hystorical period 2 years.

We see that the most profitable optimal portfolios were obtained with using � ��� , ����,
����.

Figure 2. Optimal portfolio profit, World stock market, hystorical period 2 years.
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Optimal portfolios profit, T=2 years
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For World stock market the best results gave measures �� ����� �� ��� � ����.
We also investigated mixed stock portfolios, consisted of Russian and World stocks

Mixed Optimal Portfolios Profit,T=2 years
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Figure 3. Mixed optimal portfolio profit, hystorical period 2 years

Here the best result show � ����� ��� � � ��� � �� ����.
The structure of mixed optimal portfolio for �� ���� has the following structure:
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The structure of mixed optimal 
portfolio
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Figure 4. The structure of mixed optimal portfolio.

Conclusions

- Introdused risk measures can be applied equally with traditional measures. But the most
profitable mixed optimal portfolios were obtained with � ��.

- The main part in the structure of mixed optimal portfolio take the World stocks. Aeroflot is
the leader among Russian stocks.

- The most profitable optimal portfolios for the Russian stocks were obtained with � ��� � ����� ����

risk measures.
- For the World stocks the most profitable optimal portfolios were obtained with �� ��-based

risk measures and ����.
- The World optimal portfolios were more diversificated in the short time periods.
- The most preferable historical period varies for different risk measures. Generally it was equal

to two years.
- On the short time periods ���� is more efficient than ����.
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Abstract

In our model we consider open populations divided into a finite number of sub-

populations. These populations play a relevant part in many problems. For instance,

we may consider the drivers which are clients of an insurance company. According to

their records they are placed in one of the Bonus-Malus classes. A similar example is

given by the clients of a bank each of which is placed in a Credit-Rating level. Another

example can be given by the population within a Pension Plan. The beneficiaries of

the fund can be grouped into subgroups, namely, ”Active”, ”Retired”, ”Invalid” and

even more.

It is easily seen that to manage these populations it is very important to have

information about the relative sizes of the sub-populations.

With our model, we obtain limit results for these relative sizes considering the

possibilities of entrances, reclassifications and departures of population elements.

We also consider that new elements entering the population are subject to an initial

classification and so they can be initially placed into any of the sub-populations.

Our treatment will be based on finite, discrete parameter, homogeneous Markov

chains. We consider the possibility of more than one transient class as well as more

than one recurrent class.

The stability of relative sizes of sub-populations, despite entrances, departures and

reallocations, shows the existence of a structure. We call these structures stochastic

vortices.

We will not develop this aspect in here, but during our study we noted that an

interesting problem occurs when, for the one step transition matrix of a recurrent class,

83
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we have more than one module 1 eigenvalues. Then, from the Frobenius theorem, it

may be shown that there is a limit cycle for the transition probabilities between

states in that class. Nevertheless, under general conditions the relative sizes of the

corresponding sub-populations will be stable.

Keywords: Markov Chains; Stochastic Vortices.

1 Introduction

Let us consider an open population divided into sub-populations, whose elements are sub-

ject to periodic reclassifications. In each reclassification, the population elements can be

placed into any of the sub-populations. Besides this, we assume that new elements enter-

ing the population are subject to an initial classification and likewise, they can be initially

placed into any of the sub-populations. These populations play a relevant part in many

problems. For instance, we may consider the drivers which are clients of an Insurance

Company. In each annuity, according to their records they are reclassified and placed

in one of the Bonus-Malus classes. A similar example is given by the clients of a Bank

Institution, each of which is placed in a Credit-Rating level. The list of examples can,

very easily, be extended. At the end of the presentation we will see an application of the

model to the population of Pension Fund Beneficiaries. It is easily seen that to manage

these populations it is very important to have information about the relative sizes of the

sub-populations. Using the stochastic vortices model, we obtain limit results for these rel-

ative sizes assuming that: a) entries, reallocations and departures occur at equally spaced

times; b) probabilities of reallocation of the population elements are stable; c) entries

are given by Poisson distributed random variables; d) transition probabilities between

sub-populations are stable. Our treatment will be based on finite, discrete parameter,

homogeneous Markov chains, considering the possibility of more than one transient class

and more than one recurrent class. However, in this presentation, we will foccus our at-

tention in the transient classes. The stability of relative sizes of sub-populations, despite

entrances, departures and reallocations, shows the existence of a structure. We call these

structures stochastic vortices. An interesting problem occurs when, for the one step tran-

sition matrix of a recurrent class, we have more than one module 1 eigenvalues. Then,

from the Frobenius theorem, it may be shown that there is a limit cycle for the transi-
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tion probabilities between states in that class. Nevertheless, under general conditions the

relative sizes of the corresponding sub-populations will still be stable.

2 Population Structure

In our study will consider:

• populations divided into k sub-populations, corresponding to k Markov chain states,

grouped into w communication classes;

• k+
d transient states grouped into d transient classes, with kj , j = 1, . . . , d states;

• k − k+
d recurrent states grouped into r recurrent classes, with kd+j , j = 1, . . . , r

states.

The one step transition matrix of the Markov between sub-populations will be

P =



P1,1 . . . P1,d P1,d+1 . . . P1,w

...
. . .

...
...

. . .
...

Pd,1 . . . Pd,d Pd,d+1 . . . Pd,w

Pd+1,1 . . . Pd+1,d Pd+1,d+1 . . . Pd+1,w

...
. . .

...
...

. . .
...

Pw,1 . . . Pw,d Pw,d+1 . . . Pw,w


(1)

with Pi,j the ki × kj sub-matrix of the transition probabilities between the states of the

transient classes with index i, i = 1, . . . , d [recurrent class with index i−d, i = d+1, . . . , w]

and the states of the transient classes with index j , j = 1, . . . , d [recurrent class with index

j − d , j = d + 1, . . . , w]

We order the classes in such a way that Pl,h = 0 , l > h

Pl,h = 0 , h 6= l , l = d + 1, . . . w
(2)
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The one step transition matrix can be then written as

P =



P1,1 . . . P1,d P1,d+1 . . . P1,w

...
. . .

...
...

. . .
...

O . . . Pd,d Pd,d+1 . . . Pd,w

O . . . O Pd+1,d+1 . . . O
...

. . .
...

...
. . .

...

O . . . O O . . . Pw,w


(3)

To lighten the writing, from now on we will put

P =

 K U

O V

 (4)

with

• K - the k+
d × k+

d transition matrix between transient states;

• U - the k+
d × (k − k+

d ) transition matrix between the transient and the recurrent

states;

• O - the (k − k+
d )× k+

d null matrix;

• V - the (k − k+
d )× (k − k+

d ) transition matrix between the recurrent states

Lemma 1 The n-th step transition matrix will be

P n =

 Kn Un

O V n

 (5)

with

Un = Un−1 · V + U ·Kn−1 , n ∈ N \ {1} (6)

Proof 1 Since the Markov chain is homogeneous we will have P (n) = Pn and the thesis

is easily established through mathematical induction. �

3 Stochastic Vortices Model

3.1 Entrances in the Population

In this section we will make several assumptions:
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• The number of elements entering the population in each time period, Ei , i ∈ N0,

will be independent and Poisson distributed with mean λi , i ∈ N0,

Ei ∼ P (λi) , i ∈ N0 (7)

• The mean values λi , i ∈ N0, will be given by

λi = a + b θi , θ > 0 , i ∈ N0 (8)

Note that this is quite a general assumption. For instance, for a = 0 we can obtain

λi = bθi, which represents a population with a geometric growth. We can also obtain

λi = a(1 − e−δ i), if b = −a and θ = e−δ, which represents a population with an

asymptotic growth;

• New elements entering the population are subject to an initial classification. Ele-

ments entered in the i-th time period will be allocated to the different sub-populations

according to the components of ci , i ∈ N0. We will also consider the sub-vector ti

[ri] of ci, whose components are the probabilities for entering in transient [recur-

rent] states, thus c T
i =

[
ti | ri

]T
. Each component of the probabilities of initial

classification vector will be given by

ci,j = c0,j + ej γi , i ∈ N0 , j = 1, . . . , k.

with

– c0 → stable probability vector;

– e →
∑k

j=1 ej = 0 , i ∈ N0 and |ej | < |c0,j | , j = 1, . . . , k;

– 0 < γ < 1.

• The one-step transition matrix is given by (4) so the n-th step transition matrix is

given by (5).

3.2 Expected Sub-Populations Dimension

Let Ni represent the number of elements arriving at each sub-population in time period

i , i ∈ N0. Recalling that Ei, number of elements arriving at the population in time period

i, is Poisson distributed with mean λi, it is easy to prove that
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Ni ∼ P(λi ci) , i ∈ N0.

After n time periods, the elements entered in the i-th time period have been subject to

n− i reclassifications. In this way, for the number of elements in each population in period

n, that arrived to population in time period i, Ni,n, we can prove that

Ni,n ∼ P(λi ci P n−i) , i ∈ N0.

Finally, for the total number of elements in each sub-population in time period n, we will

have

N++
n =

n∑
i=0

Nn,i ∼ P(λ++
n )

with

λ++ T
n =

 n∑
i=0

λi tT
i Kn−i

︸ ︷︷ ︸
∣∣ n∑

i=0

λi tT
i Un−i +

n∑
i=0

λi rT
i V n−i

︸ ︷︷ ︸


1 2

where:

1 - Expected Dimension of Sub-Populations corresponding to transient states;

2 - Expected Dimension of Sub-Populations corresponding to recurrent states.

3.3 Asymptotic Results for Transient States

For the purpose of this presentation it is sufficient to foccus our attention in the transient

states. In this sub-section we will analyse the existence of stochastic vortices in the

transient states, which will imply a stable limit dimension of those sub-populations.

Let us assume that P is a k × k diagonilizable matrix.

Under very general conditions, see Schott [6], we will have:

P =
k∑

j=1

ηj αj β T
j (9)

where ηj

[
αj , β T

j

]
; j = 1, . . . , k are the eigenvalues [left and right eigenvectors] of P .
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Now, the n-th step transition matrix, P (n) will be, see also Schott [6], the n-th power of

P and so,

P (n) = P n =
k∑

j=1

ηn
j αj β T

j (10)

For the sub-matrices Pl,h, l = 1, . . . , w, h = 1, . . . , w of the transition matrix P , considering

k+
i =

∑i
j=1 kj , we will have

Pl,h =
k+

h∑
j=k+

l−1+1

ηj αj,l β T
j,h , l = 1, . . . , w , h = 1, . . . , w (11)

as well as

Pl,h(n) =
k+

h∑
j=k+

l−1+1

ηn
j αj,l β T

j,h , l ≤ h , h = 1, . . . , d (12)

From Parzen [4], we know that the transition probabilities between the transient states

tend to zero, as n → +∞, so

lim
n→+∞

pl,h(n) = 0 , l = 1, . . . , d , h = 1, . . . , d (13)

and so, from (12) and (13) we can conclude that for the transient states we have

|ηj | < 1 , j = 1, . . . , k+
d .

For vortices based on the transient states, we will only consider the K sub-matrix of (4)

given by

K =
k+

d∑
j=1

ηj αj βT
j (14)

where the αj

[
βT

j

]
, j = 1, . . . , k+

d are the left [right] eigenvectors of K.

Proposition 1 With λi = a + b θi , 0 < θ < 1, a, b ∈ R and K a diagonizable matrix, the

limit dimension for the sub-populations in the transient states is given by

λ+ T
∞ = lim

n→+∞
λ+ T

n = lim
n→+∞

n∑
i=0

(a + b θi) tT
i Kn−i =

=


a tT

0 (Ik+
d
−K)−1 , 0 < θ < 1

(a + b) tT
0 (Ik+

d
−K)−1 , θ = 1
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Proof 2 With λi = a + b θi , i ∈ N0, we will have

λ+T
n =

n∑
i=0

λi tT
i Kn−i =

n∑
i=0

λn−i tT
n−i Ki =

=
n∑

i=0

(a + bθn−i) (tT
0 + eT γn−i) Ki =

=
n∑

i=0

[
a tT

0 + a eT γn−i + b tT
0 θn−i + b eT (θ γ)n−i

]
Ki.

In order to simplify calculation, we will present it by parts:

1. lim
n→+∞

a tT
0

n∑
i=0

Ki = a tT
0

+∞∑
i=0

Ki = a tT
0 (I −K)−1,

since K is the transient states matrix and likewise |ηj | < 1 , j = 1, . . . , k+
d .

2. lim
n→+∞

γn
n∑

i=0

(
K

γ

)i

= lim
n→+∞

γn
n∑

i=0

k+
d∑

j=1

(
ηj

γ

)i

αj βT
j =

=
k+

d∑
j=1

[
lim

n→+∞
γn

n∑
i=0

(
ηj

γ

)i
]

αj βT
j = 0,

since that

lim
n→+∞

γn
n∑

i=0

(
ηj

γ

)i

= lim
n→+∞

γn+1 − ηn+1
j

γ − ηj
= 0,

with γ 6= ηj, once that 0 < γ < 1 and |ηj | < 1 , j = 1, . . . , k+
d . In this way,

lim
n→+∞

a eT γn−i
n∑

i=0

Ki = lim
n→+∞

a eT γn
n∑

i=0

(
K

γ

)i

= 0

Note that, if γ = η′j we still have

lim
n→+∞

γn
n∑

i=0

(
ηj

γ

)i

= lim
n→+∞

γn(n + 1) = 0, once that 0 < γ < 1.

3. lim
n→+∞

θn
n∑

i=0

(
K

θ

)i

This case resumes to one of the previous according to θ = 1 or 0 < θ < 1.

Then,
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lim
n→+∞

b tT
0 θn−i

n∑
i=0

Ki = lim
n→+∞

btT
0 θn

n∑
i=0

(
K

θ

)i

=

 b tT
0 (I −K)−1 , θ = 1

0 , 0 < θ < 1

4. lim
n→+∞

(θ γ)n
n∑

i=0

(
K

θ γ

)i

= 0

Note that this case equals case 2 since that θ γ 6= 1. In this way,

lim
n→+∞

b eT (θ γ)n−i
n∑

i=0

Ki = lim
n→+∞

b eT (θ γ)n
n∑

i=0

(
K

θ γ

)i

= 0

The rest of the proof is easy to establish. �

The limit relative dimensions will then be stable, for 0 < θ ≤ 1:

π∞,j =
λ+
∞,j

k+
d∑

j=1

λ+
∞,j

, j = 1, . . . , k+
d

Thus, a stochastic vortice is established in the transient states, for 0 < θ ≤ 1.

If θ > 1, the sub-populations dimension will grow to +∞, proporcionally to θn+1 and we

may establish the next proposition.

Proposition 2 With λi = a+ b θi , θ > 1, a, b ∈ R and K a diagonizable matrix, the limit

dimension for the sub-populations in the transient states is given by

λ+ T
∞,θ = lim

n→+∞

λ+ T
n

θn+1
=

1
θ

b tT
0

(
Ik+

d
− K

θ

)
The proof is similar to the previous one.

The limit relative dimensions will be stable, as n → +∞, and will be given by:

π∞,θ,j =
λ+
∞,θ,j

k+
d∑

j=1

λ+
∞,θ,j

, j = 1, . . . , k+
d

so a stochastic vortice is established in the transient states, even in the cases where θ > 1.
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3.4 Confidence Intervals

For the total number of elements in each sub-population, we proved that

N+
n,j ∼ P(λ+

n,j).

For large populations, we can obtain the confidence interval for λ+
n,j :

[
N+

n,j − zq/2

√
N+

n,j ; N+
n,j + zq/2

√
N+

n,j

]
, j = 1, . . . , k+

d

with zq/2 = P
[
Zj ≤ z

2

]
= 1− q

2 , where Zj ∼ N (0, 1).

4 An Application to Pension Funds

4.1 Population

Consider the population of a Pension Fund Beneficiaries, for which we considered the

following sub-populations:

• Active Employees [a] [Ages 20 to 64]

• Retired [r] [Ages 65 to 106]

• Disabled [i] [Ages 21 to 106]

• Survival Beneficiaries

– Sons [f ] [Ages 0 to 24]

– Spouses [c] [Ages 26 to 106]

– Spouses with Sons [c+] [Ages 28

to 52]

4.2 One Step Transition Matrix

The one-step transition matrix was built using the tables:

• TV 73-78 [Mortality Table]

• EKV 80 [Disability Table]

• PCR Turnover [Turnover Table]

• Portuguese Remaridation Rates

and considering a Plan with the relations between sub-populations expressed in the one-



G.R.D. Guerreiro and J.T.P.N. Mexia - Stochastic vortices in periodically 93

step transition matrix :

P =



Pa,a Pa,i Pa,r Pa,c+ Pa,c Pa,f pa,s

O Pi,i O Pi,c+ Pi,c Pi,f pi,s

O O Pr,r Pr,c+ Pr,c Pr,f pr,s

O O O Pc+,c+ Pc+,c Pc+,f pc+,s

O O O O Pc,c O pc,s

O O O O O Pf,f pf,s

0 0 0 0 0 0 1


Considering that each age of population elements corresponds to a state, we get a total of

305 states in the Markov chain.

For the initial classification probabilities we used a fixed vector estimated from data of

some Portuguese Pension Funds.

4.3 Entrances in the Population

To implement the model we considered different scenarios for entrances in the population.

In order to analyse the evolution of the population according to strong differences in the

rates of entrances, we will consider two very different scenarios. In the first one we will

assume an asymptotic growth in the number of new elements arriving the population,

which is represented by λi = κ(1 − e−β i) , i ∈ N0. The second scenario will represent a

population where the rate of new elements as geometric growth, which is represented by

λi = ρ ri , i ∈ N0. Note that both are particular cases of λi = a + bθi , i ∈ N0. Parameters

will be chosen in such a way that the first scenario corresponds to a case where 0 < θ < 1

and in the second one, θ will be greater than 1.

When choosing this scenarios we are trying to illustrate some different possibilities for the

entrances in the population and how the model responds to those differences. We did not

concern, at this moment, if any of those rates of entrances is realistic to a pension fund

population.

Figure 1 illustrates the rate of entrances in both scenarios during a period of 100 years.
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Table 1: Expected Entrances in Population

Scenario 1 Scenario 2

λn = 100(1− e−0,138629 n) λn = 100(1, 01)n

Figure 1: Expected Entrances in Population - Scenarios 1 and 2

4.4 Sub-Population Dimension

Figure 2 illustrates the expected dimension of the total population, in both scenarios, over

a period of 100 years. As we may see, for the first scenario the expected number of elements

tend to stabilize after a certain period of time and in the second one the dimension of the

total population keeps on growing over time.

Figure 2: Expected Dimension of Population - Scenarios 1 and 2

Figure 3 illustrates the sub-populations dimension over the same period of time. As we may

see, the evolution of the sub-populations, in both scenarios, are similar to the evolution of

the total population.

Figures 4 and 5 illustrate the evolution of the expected relative dimensions of sub-populations

in scenarios 1 and 2, respectively. As we may note, despite the continuous growth of the

expected absolute dimensions in scenario 2, the relative dimensions will also tend to be

stable, which corresponds to the existence of a stochastic vortice in this population. This
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Figure 3: Expected Dimension of Sub-Populations - Scenarios 1 and 2

existence of a stochastic vortice is verified in both scenarios.

Figure 4: Expected Relative Dimension of Sub-Populations - Scenario 1

Table 2 illustrates the estimated dimensions of the sub-populations in both scenarios in a

long time perspective.

4.5 Confidence Bands

Figure 6 illustrates some confidence intervals for the estimated dimensions calculated over

a period of 100 years for three of the sub-populations - Spouses, Retired, Active Employ-

ees - and also for the Total Population. These confidence bands refer to the estimated

dimensions in scenario 1.
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Figure 5: Expected Relative Dimension of Sub-Populations - Scenario 2

Figure 6: Confidence Bands

5 Conclusions

The stochastic vortices model is a useful model in the study of populations subject to

periodic reclassifications. It is a model easy to implement and produces good results in a

variety of situations where closed models fail. The fact that the model admits possibilities

of entrances, departures and initial classification implies that the model produces results

more representative of reality.
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Table 2: Expected Dimension of sub-populations in long run perspective

Sub-Populations Scenario 1 Scenario 2

λ+
∞ π∞,j π∞,j

Actives 2.485,79 0,6392 0,7090

Disabled 342,29 0,0880 0,0735

Retired 642,27 0,1651 0,1328

Spouses with Sons 10,53 0,0027 0,0029

Spouses 403,22 0,1037 0,0804

Sons 5,20 0,0013 0,0014

Total 3889,30 1,0000 1,0000
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Abstract

The study of subexponentiality has formed a basis of studies concerning tail prob-
abilities. However, the mainstream of this study has been restricted to independent
cases and available methods can hardly be used to deal with dependent cases. Mo-
tivated by applications in many applied fields including insurance and finance, we
propose to promote this theory to dependent cases.

(1) A remarkable feature of subexponentiality is that the sum and maximum of
independent, identically distributed, subexponential random variables are tail asymp-
totic, known as the principle of a single big jump. We shall consider to what extent
the underlying random variables can be dependent while this principle still holds.

(2) We shall also study the tail behavior of the product of dependent subexponen-
tial random variables. The product is more intractable than the sum due to the very
definition of subexponentiality. We shall consider how the product inherits the tail
behavior of its factors.

(3) We shall derive explicit asymptotic formulas for the tail probabilities of weighted
sums of finite or infinite terms, where the random weights are dependent and are al-
lowed to be dependent on the primary subexponential random variables.

1 Introduction

The study of the tail probabilities of quantities of certain stochastic structure such as sums

of random variables is of fundamental interest in many applied fields including insurance

and finance. However, it is usually not possible to get closed-form expressions except

for very ideal cases. People have to add certain regular conditions on the underlying

distributions so as to alternatively derive asymptotic formulas. Furthermore, practical

studies show that empirical data in applied fields, particularly in insurance and finance,

are usually heavy tailed. Subexponentiality emerged from this trend four decades ago.

98
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The concept of subexponentiality was independently introduced by Chistyakov (1964)

and Chover et al. (1973) in the context of branch processes. An early textbook treatment

was given by Athreya and Ney (1972). The potential role of subexponential distributions

within queueing theory was recognized by Pakes (1975) and Borovkov (1976, 1984). The

importance of the subexponential class as a useful class of heavy-tailed distributions in

the context of applied probability, in general, and insurance mathematics, in particular,

was realized by Teugels (1975). Reviews of subexponential distributions can be found in

Bingham et al. (1989), Embrechts et al. (1997), Rolski et al. (1999), Asmussen (2000),

Rachev (2003), and Resnick (2007), among others.

Through the participation of many people in theoretical and applied probability, a

beautiful picture for the theory, methodologies, and applications of subexponentiality

is coming into being. A rather complete list of references on subexponentiality can be

retrieved from MathSciNet (an official web site of American Mathematical Society) by

inputting appropriate key words such as ‘subexponential’, ‘heavy tail’, ‘regular variation’,

etc. in the search item ‘title’. From the list we see many major figures in the worldwide

community of theoretical and applied probability working on the topic. Subexponentiality

has important applications in various areas, particularly in insurance and finance, as

summarized by Embrechts et al. (1997).

As in most other branches of probability theory, mainstream study of subexponentiality

has been restricted to independent cases. We plan to promote subexponential theory

to dependent cases. As the tail behavior of more complicated stochastic models can

usually be reduced to the tail behavior of sums or products or sums of products of random

variables, we are going to raise some questions which we think are interesting and useful,

but challenging as well. Very often, questions related to subexponentiality look simple

and elementary but to solve them could be very hard or impossible. More precisely, we

shall study the asymptotic tail behavior of

• sums of dependent random variables;

• products of dependent random variables;

• finite sums with dependent random weights; and

• infinite sums with dependent random weights.

The scenarios for independent and dependent cases may be sometimes similar some-

times different. However, most available methods developed in the study of subexponen-

tiality can hardly be used to deal with dependent cases. It is likely that techniques dealing

with independent and dependent cases are completely different.
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Example 1 Consider a discrete-time risk model in which the surplus of the insurance

company is invested into a risky asset that generates a random, possibly negative, return

rate in each period. Denote by An ∈ (−∞,∞) the net income (the total premium income

minus the total claim amount) within period n and by Rn ∈ (−1,∞) the random return

rate in period n, n = 1, 2, . . .. Let the initial surplus be x ≥ 0. Hence, if we assume that

the net income An is calculated at the end of period n then the surplus, denoted by Sn,

accumulated till the end of period n satisfies the recursive equation

S0 = x ≥ 0, Sn = (1 +Rn)Sn−1 +An, n = 1, 2, . . . .

Now write

Xn = −An, Yn =
1

1 +Rn
, n = 1, 2, . . . .

The random variable Xn is the net payout within period n and the random variable Yn

is the discount factor from time n to time n − 1, n = 1, 2, . . .. In the terminology of

Norberg (1999) as well as Tang and Tsitsiashvili (2003b, 2004), we call Xn, n = 1, 2, . . .,

the insurance risks and Yn, n = 1, 2, . . ., the financial risks.

The discounted value of the surplus process is defined as

S̃0 = x, S̃n = Sn

n∏
j=1

Yj , n = 1, 2, . . . .

It is easy to see that S̃n can also be expressed as

S̃0 = x, S̃n = x−
n∑

i=1

Xi

i∏
j=1

Yj , n = 1, 2, . . . .

See Nyrhinen (1999, 2001) and Tang and Tsitsiashvili (2003b, 2004). �

Example 2 The study of tail probabilities is of fundamental interests in financial risk

management as most risk measures are calculated through tail probabilities. Consider the

sum

Sn = X1 + · · ·+Xn,

where X1, . . . , Xn are n dependent risks. We shall focus on the asymptotic behavior of the

tail probability Pr (Sn > x) for large x. This is relevant for applications in financial risk

management. As an example, let us look at calculation of the Conditional Tail Expectation

(CTE) of Sn. For an overview of risk measures, see Dhaene et al. (2006) and McNeil et

al. (2005). The confidence level α should be chosen to be close to 1 (typically α = 95% or

99%), indicating that the corresponding Value at Risk (VaR) or Quantile Qα[Sn] should
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be large. Note that

CTEα [Sn] = E [Sn|Sn > Qα [Sn]]

= Qα [Sn] +
E
[
(Sn −Qα [Sn])+

]
Pr (Sn > Qα [Sn])

= inf {x : Pr (Sn > x) ≤ 1− α}+

∫∞
Qα[Sn] Pr (Sn > x) dx

Pr (Sn > Qα [Sn])
. (1)

Therefore, if we have a transparent and efficient approximation for Pr (Sn > x) for large x,

then by plugging it into the right-hand side of (1) we can immediately obtain an efficient

approximation for CTEα [Sn].

As commented by Bingham et al. (2003), “the empirical evidence suggests that most

financial data show both pronounced asymmetry and much heavier tail behaviour than is

consistent with normality”. We may assume that the random variables X1, . . . , Xn follow

subexponential distributions and then pursue some efficient approximations as desired.

Based on the fact that Tail VaR preserves the convex order, it is possible to construct

upper and lower bounds for this risk measure by using the concept of comonotonicity; see

Dhaene et al. (2002a, 2002b) and references therein. Their approach is generalized to the

class of concave distortion risk measures; see Dhaene et al. (2006). In doing so, for the

upper bound it is hard to capture the impact of any subtle dependence information. The

lower bound on the other hand, which is based on a conditioning technique, leads to much

better performance in this respect. Unfortunately, until now the lower bound approach

can only be applied to sums of lognormal random variables, with some extensions to the

class of multivariate elliptical distributions.

To extend the study to more useful scenarios, we shall continue to consider the tail

behavior of the weighted sum

S(w)
n = w1X1 + · · ·+ wnXn,

where w1, . . . , wn are n other positive (random or nonrandom) variables representing

weights of the primary random variables X1, . . . , Xn.

Our results allow immediate applications to financial risk management. As an ex-

ample, we consider the capital allocation w ∈ Rn
+ among n risky assets with returns

Y = (Y1, . . . , Yn)>. Write X = −Y and introduce a portfolio risk measure ρ. Then, any

risk-averse investor will choose a portfolio solution of the following optimization problem:

w = arg min
w∈Rn

+

ρ
(
w>X

)
such that w>e = 1.

It is most likely that we can not get an exact solution. However, a good asymptotic formula

for the tail probability of S(w)
n enables us to derive an explicit asymptotic solution. �
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2 A Brief Review on Subexponentiality

Hereafter, all limit relationships are according to x → ∞ unless stated otherwise, the

symbol ∼ means that the quotient of both sides tends to 1, the symbol . means that

the upper limit of the quotient is not more than 1, and the symbol & is understood in a

similar way. By saying that a distribution F is supported on [0,∞) we mean F (0−) = 0

and F (x) = 1 − F (x) > 0 for all x. If F on [0,∞) has a finite mean µ > 0, then its

equilibrium distribution is defined as

Fe (x) =
1
µ

∫ x

0
F (y) dy, x ≥ 0.

The moment generating function at some real number r of a measure ν on [0,∞) is defined

to be

ν̂(r) =
∫ ∞

0−
erxν(dx).

2.1 Definition of Subexponentiality

A distribution F on [0,∞) is said to be subexponential, written as F ∈ S, if the relation

lim
x→∞

F 2∗(x)
F (x)

= 2 (2)

holds, where F 2∗(x) =
∫∞
0− F (x−y)F (dy), x ≥ 0, denotes the convolution of F with itself.

Table 1.2.6 of Embrechts et al. (1997) shows that the subexponential class contains a lot

of popular distributions such as Pareto, Lognormal, heavy-tailed Weibull, and Loggamma

distributions.

Examples for Subexponential Distributions

(F = distribution function, f = density function)

• Lognormal: for −∞ < µ <∞ and σ > 0,

f(x;µ, σ2) =
1√

2πσx
exp{−(lnx− µ)2/(2σ2)};

• Pareto: for α > 0, κ > 0,

F (x) =
(

κ

κ+ x

)α

;

• Burr: for α > 0, κ > 0, τ > 0,

F (x) =
(

κ

κ+ xτ

)α

;
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• Benktander-type I: for α > 0, β > 0,

F (x) = (1 + 2(β/α) lnx) exp{−β(lnx)2 − (α+ 1) lnx};

• Benktander-type II: for α > 0, 0 < β < 1,

F (x) = eα/βx−(1−β) exp{−αxβ/β};

• Weibull: for c > 0, 0 < τ < 1,

F (x) = exp{−cxτ};

• Loggamma: for α > 0, β > 0,

f(x) =
αβ

Γ(β)
(lnx)β−1x−α−1;

A remarkable feature of subexponentiality is that, for independent and identically

distributed (i.i.d.) random variables X1, X2, . . . with common distribution F ∈ S, the

relation

Pr

(
n∑

k=1

Xk > x

)
∼ nF (x) (3)

holds for all n = 1, 2, . . .; see Embrechts et al. (1979). Since Pr (max1≤k≤nXk > x) ∼
nF (x), relation (3) means that, in the tail asymptotic sense, the maximum of the first

n random variables exhausts the sum. This explains why subexponentiality is useful in

modeling heavy-tailed distributions. In extreme value theory, it is generally accepted that

an extreme event happens mainly due to a single unusually large input to the stochastic

system, known as the principle of a single big jump.

This feature of subexponentiality is especially relevant nowadays, in view of enormous

insurance claims made in the aftermath of September 11, 2001 attacks, the 2004 Indian

Ocean Tsunami, the 2005 Hurricane Katrina, the 2007 Californian fires, and the most

recent 2008 Sichuan earthquake.

2.2 Related Classes of Distributions

It is well known that each subexponential distribution F is long tailed, written as F ∈ L,

in the sense that the relation

F (x+ a) ∼ F (x)

holds for all real numbers a > 0; see Chistyakov (1964) or Lemma 1.3.5(a) of Embrechts

et al. (1997). One easily sees that, for every distribution F ∈ L, there is some function

a(·) : [0,∞) → [0,∞) such that the following items hold simultaneously:

a(x) →∞, a(x) = o(x), F (x± a(x)) ∼ F (x). (4)
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People have introduced some subclasses of S in various situations in order to overcome

technical difficulties due to excessive generality of the concept of subexponentiality. The

class S∗ was introduced by Klüppelberg (1988) and is characterized by the relation∫ x

0
F (x− y)F (y)dy ∼ 2µF (x)

with 0 < µ <∞ being the mean of F supported on [0,∞). It is known that if F ∈ S∗ then

both F ∈ S and Fe ∈ S. This class is marginally smaller than S but it enjoys several nicer

properties than S. Taking full advantages of these properties of S∗, Foss and Zachary

(2003) and Foss et al. (2005) studied the probability that a random walk crosses a high

boundary on a random time interval and they derived an elegant asymptotic formula which

holds uniformly over all stopping times and a wide class of nonlinear boundaries. This

result significantly extends the original work of Asmussen (1998). Nevertheless, their proof

relies heavily on the i.i.d. assumption and leaves little room for extension to dependent

cases.

Another commonly used subclass of S is the intersection L ∩ D, where D is the class

of distributions with dominatedly-varying tails (with dominated variation) characterized

by the relation

lim sup
x→∞

F (xy)
F (x)

<∞ for all 0 < y < 1.

Clearly, if F ∈ D then it holds for every y > 0 that

0 < lim inf
x→∞

F (xy)
F (x)

≤ lim sup
x→∞

F (xy)
F (x)

<∞. (5)

In particular, L∩D contains all distributions with regularly-varying tails characterized by

the relation

lim
x→∞

F (xy)
F (x)

= y−α, y > 0,

for some α ≥ 0. Denote by F ∈ R−α the regularity property above, so that R is the union

of all R−α over the range 0 ≤ α <∞.

Thanks to the well-developed Karamata theory, it is usually much easier to handle

distributions from R than to handle other subexponential distributions. Results similar

to but weaker than Karamata theorems are also available for distributions from D. To see

this, we further introduce two indices of a distribution. Let F be a distribution on [0,∞)

and write f(x) =
(
F (x)

)−1, which is a positive and non-decreasing function on (−∞,∞).

Let J+
F be the infimum of those J for which there exists a constant A = A(J) such that

for each Λ > 1, the relation
f(λx)
f(x)

≤ A(1 + o(1))λJ
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holds uniformly in λ ∈ [1,Λ], and let J−F be the supremum of those J for which there

exists a constant B = B(J) such that for each Λ > 1, the relation

f(λx)
f(x)

≥ B(1 + o(1))λJ

holds uniformly in λ ∈ [1,Λ]. The quantities J+
F and J−F define the upper and lower

Matuszewska indices of the function f(x), respectively. By Theorem 2.1.5 and Corollary

2.1.6 of Bingham et al. (1989), they coincide with

J+
F = inf

{
− logF ∗(y)

log y
: y > 1

}
, J−F = sup

{
− logF ∗(y)

log y
: y > 1

}
,

where

F ∗(y) = lim inf
x→∞

F (xy)
F (x)

, F
∗(y) = lim sup

x→∞

F (xy)
F (x)

.

Following Tang and Tsitsiashvili (2003a), we simply call J+
F and J−F the upper and lower

Matuszewska indices of F , respectively.

Clearly, if F ∈ D then J+
F <∞, and if F ∈ R−α then J−F = J+

F = α. From Proposition

2.2.1 of Bingham et al. (1989), we see that, for any p1 < J−F and p2 > J+
F , there are positive

constants C and D such that the two-sided inequality

C−1y−p2 ≤ F (xy)
F (x)

≤ Cy−p1 (6)

holds for all xy ≥ x ≥ D. In particular, from (6) one easily sees that if F ∈ D then the

relation

x−p = o(F (x)) (7)

holds for all p > J+
F . For more details of (6) and (7), see e.g. Lemma 3.5 of Tang and

Tsitsiashvili (2003a) and its proof.

Using (6) and (7), research related to distributions from L∩D is usually doable under

less restrictive conditions. There are essential difficulties in extending the discussion to

broader subclasses of S to include lognormal and Weibull distributions.

As an extremal situation of R−α, the class R−∞ of distributions with rapidly-varying

tails (with rapid variation) is characterized by the relation

lim
x→∞

F (xy)
F (x)

= 0 for all y > 1.

We remark that R−∞ is a broad class containing both heavy-tailed and light-tailed dis-

tributions and that it well complements the class R−α with α = ∞. Rapid variation has

been investigated by many researchers in applied probability since de Haan (1970). Recent

applications of the class R−∞ can be found in Tang and Tsitsiashvili (2004) and Barbe

and McCormick (2008), among others.



Q. Tang - Subexponential Tails in the World of Dependence 106

In the context of ruin theory, Konstantinides et al. (2002) first introduced the class A.

In terms of the lower Matuszewska index, we can restate its definition as that a distribution

F on [0,∞) belongs to the class A if F is subexponential and has a lower Matuszewska

index 0 < J−F ≤ ∞. Clearly, the condition 0 < J−F ≤ ∞ is equivalent to the condition

lim sup
x→∞

F (vx)
F (x)

< 1 for some v > 1, (8)

which is really a mild restriction in view of the fact that it is fulfilled by almost all useful

distributions with infinite supports. From this point of view, the class A almost coincides

with the class S.

2.3 Two Examples

The definition of subexponentiality opens a natural way to derive explicit asymptotic

estimates for sums of random variables in general probabilistic models. Let us look at the

following two examples for some insights.

Example 3 (Geometric Sums) Consider the random sum

Sτ =
τ∑

i=1

Xi,

where X1, X2, . . . are i.i.d. random variables with common distribution F ∈ S, while τ

is an integer-valued nonnegative random variable independent of X1, X2, . . . and having

a finite moment generating function at a neighborhood of zero. It is well known that the

ultimate maximum of a random walk with negative drift can be expressed as this random

sum with τ geometrically distributed; see Feller (1971) and Kalashnikov (1997). Recall a

classical result that, for every ε > 0, there exists some absolute constant Cε > 0 such that

the inequality

Pr (Sn > x) ≤ Cε(1 + ε)nF (x) (9)

holds for all n = 1, 2, . . . and x ≥ 0; see e.g. Theorem 1.3.5(c) of Embrechts et al. (1997).

Hence, an application of dominated convergence gives

Pr (Sτ > x) =
∞∑

n=1

Pr (Sn > x) Pr (τ = n) ∼ EτF (x). (10)

Example 4 (Gerber-Shiu Functions) This example is the germ of the recent work of

Tang and Wei (2009). Consider the compound Poisson risk model in which the surplus

process of the insurance company is modelled as

Pt = x+ ct−
Nt∑
i=1

Xi, t ≥ 0,
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where x ≥ 0 is the initial capital, c > 0 is the constant premium rate, {X1, X2, . . .}
denote sizes of successive claims forming a sequence of i.i.d.positive random variables with

common continuous distribution F and finite mean µ, and these claims arrive according

to a homogeneous Poisson process {Nt, t ≥ 0} with intensity λ > 0. As usual, we assume

the safety loading condition λµ < c.

Define the time of ruin as

T = inf {t ≥ 0 : Pt < 0} ,

where inf ∅ = ∞ by convention. For a nonnegative constant δ and a bivariate nonnega-

tive function w(·, ·) on [0,∞)2, the well-known Gerber-Shiu expected discounted penalty

function is defined as

φδ(x) = E
[
e−δTw (PT−, |PT |) 1(T<∞)

∣∣∣P0 = x
]
.

When δ = 0 and w(·, ·) ≡ 1, the Gerber-Shiu function reduces to the ruin probability

ψ(x) = Pr (T <∞|P0 = x) .

The following technique of using renewal theory in the study is due to Gerber and Shiu

(1998). Assume δ ≥ 0 and let ρ = ρ(δ) ≥ 0 solve the generalized Lundberg equation

δ + λ− cs = λF̂ (−s). (11)

With this ρ, we have the defective renewal equation

φδ(x) =
cρ− δ

cρ

∫ x

0
φδ(x− y)g(y)dy + h(x), (12)

where

g(y) =
λρ

cρ− δ

∫ ∞

y
e−ρ(z−y)F (dz), y ≥ 0,

h(x) =
λ

c

∫ ∞

x
e−ρ(y−x)

∫ ∞

y
w(y, z − y)F (dz)dy.

As remarked by Gerber and Shiu (1998), when δ = 0 (so ρ = 0) we have the understanding

δ

ρ
= lim

s→0+

cs− λ
(
1− F̂ (−s)

)
s

= c− λµ. (13)

Hence for this case, relation (12) is simplified to

φ0(x) =
λµ

c

∫ x

0
φ0(x− y)g(y)dy + h(x),
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where

g(y) =
1
µ
F (y), y ≥ 0,

h(x) =
λ

c

∫ ∞

x

∫ ∞

y
w(y, z − y)F (dz)dy.

It is easy to see that g(·) is a standard probability density function on (0,∞) for both

δ > 0 and δ = 0. Write its corresponding cumulative distribution function as G. For

simplicity, we assume w(·, ·) = w1(·)w2(·) with w1(·) : [0,∞) → [0,∞) non-increasing and

w2(·) : [0,∞) → [0,∞) non-decreasing. Then, we have

h′(x) = −λ
c
w1(x)

∫ ∞

x
w2(z − x)F (dz) +

ρλ

c

∫ ∞

x
e−ρ(y−x)

∫ ∞

y
w1(y)w2(z − y)F (dz)dy

= −λ
c
w1(x)

∫ ∞

x
w2(z − x)F (dz) +

ρλ

c

∫ ∞

x

∫ z

x
e−ρ(y−x)w1(y)w2(z − y)dyF (dz)

≤ −λ
c
w1(x)

∫ ∞

x
w2(z − x)F (dz) +

ρλ

c
w1(x)

∫ ∞

x

∫ ∞

x
e−ρ(y−x)w2(z − x)dyF (dz)

= 0,

where the last-but-one line is due to the monotonicity of w1(·) and w2(·). Therefore, h(·) is

non-increasing on (0,∞). Introduce a measure H on (0,∞) such that H((x,∞)) = h(x).

Therefore, we may rewrite (12) as

φδ(x) =
∫ x

0−
h (x− y)V (dy) = H ∗ V (x)− h(0)V ((x,∞)), (14)

where

V (·) =
∞∑

n=0

(
cρ− δ

cρ

)n

G∗n(·). (15)

Theorem 1 Assume ŵ2(ε) <∞ for some ε > 0.

(1) For δ > 0, further assume F ∈ S. Then,

lim
x→∞

φδ(x)
F (x)

=
λ

δ
w1(∞)w2(∞).

(2) For δ = 0, further assume Fe ∈ S. Then,

lim
x→∞

φ0(x)
Fe(x)

=
λµ

c− λµ
w1(∞)w2(∞).

The following lemma is from Rogozin and Sgibnev (1999):

Lemma 1 For some distribution F ∈ S and two other (possibly defective or excessive)

distributions F1 and F2 on [0,∞) such that ki = limx→∞ Fi(x)/F (x) exists and is finite,

i = 1, 2, it holds that

lim
x→∞

F1 ∗ F2(x)
F (x)

= k1F2(∞) + k2F1(∞).
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Proof of Theorem 1. We are to apply Lemma 1 to (14).

Step 1: Expressing G in F . When δ > 0, we have

G(x) =
λρ

cρ− δ

∫ ∞

x

∫ ∞

y
e−ρ(z−y)F (dz)dy

=
λ

cρ− δ

∫ ∞

x

(
1− e−ρ(z−x)

)
F (dz)

=
λρ

cρ− δ

∫ ∞

0
F (z + x)e−ρzdz

∼ λ

cρ− δ
F (x).

When δ = 0 (so ρ = 0), we simply have

G(x) =
1
µ

∫ ∞

x
F (y)dy = Fe(x).

Thus, for each case, by closure of the class S under tail equivalence, we have G ∈ S.

Step 2: Expressing V in G. Apply to (15) the dominated convergence theorem

guaranteed by (9). When δ > 0, we have

V ((x,∞)) =
∞∑

n=1

(
cρ− δ

cρ

)n

G∗n(x)

∼ G(x)
∞∑

n=1

n

(
cρ− δ

cρ

)n

∼
cρ−δ

cρ(
1− cρ−δ

cρ

)2

λ

cρ− δ
F (x)

=
λ

δ2
F (x).

When δ = 0, we have

V ((x,∞)) ∼ G(x)
∞∑

n=1

n

(
λµ

c

)n

=
λµ

c
Fe(x).

Step 3: Expressing h in G. We have

h(x) =
λ

c

∫ ∞

x
e−ρ(y−x)w1(y)

(
w2(0)F (y) +

∫ ∞

0
F (z + y)w2(dz)

)
dy

=
λ

c

∫ ∞

x
e−ρ(y−x)w1(y)

(∫ ∞

0−
F (z + y)w2(dz)

)
dy

∼ λ

c

∫ ∞

x
e−ρ(y−x)w1(y)

(∫ ∞

0−
w2(dz)

)
F (y)dy

=
λ

c
w2(∞)

∫ ∞

0
e−ρyw1(x+ y)F (x+ y)dy,



Q. Tang - Subexponential Tails in the World of Dependence 110

where in the third step we used the dominated convergence theory guaranteed by F ∈ L
and ŵ2(ε) <∞. Note that w1(∞) ∈ [0,∞) is well defined. Thus, when δ > 0,

lim
x→∞

h(x)
F (x)

=
λ

c
w1(∞)w2(∞) lim

x→∞

∫ ∞

0
e−ρyF (x+ y)

F (x)
dy =

λ

cρ
w1(∞)w2(∞),

while when δ = 0,

lim
x→∞

h(x)
Fe(x)

=
λµ

c
w1(∞)w2(∞).

Step 4: Conclusion. To derive an explicit asymptotic formula for φδ(x), we notice

that, when δ > 0,

V (∞) =
∞∑

n=0

(
cρ− δ

cρ

)n

=
cρ

δ
,

while when δ = 0,

V (∞) =
∞∑

n=0

(
λµ

c

)n

=
c

c− λµ
.

For both δ > 0 and δ = 0, a simple application of Lemma 1 to relation (14) completes the

proof of Theorem 1. �

By Theorem 1(2) with δ = 0 and w(·, ·) ≡ 1, under Fe ∈ S we have

lim
x→∞

ψ(x)
Fe(x)

=
λµ

c− λµ
,

which was first obtained by Embrechts and Veraverbeke (1982) (see also Theorem 1.3.6 of

Embrechts et al. (1997)).

3 Tail Behavior of Sums

Let X1, . . . , Xn be nonnegative random variables with distributions F1, . . . , Fn, respec-

tively. By saying that (X∗
1 , . . . , X

∗
n) is an independent copy of (X1, . . . , Xn) we mean

that (X∗
1 , . . . , X

∗
n) and (X1, . . . , Xn) are two independent random vectors with the same

marginal distributions and the components of (X∗
1 , . . . , X

∗
n) are independent. Write Sn

and S∗n their sums, respectively.

First, assume that X1, . . . , Xn are independent. If Fk ∈ R for all k = 1, . . . , n, then

the distribution of Sn belongs to R and the relation

Pr (Sn > x) ∼
n∑

k=1

Fk(x) (16)

holds; see page 278 of Feller (1971) or Lemma 1.3.1 of Embrechts et al. (1997). Relation

(16) succeeds (3) to work for non-identical cases. A close look at the original proof tells

that this result can be extended to the class L ∩ D; see Cai and Tang (2004). Actually,
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relation (16) even holds for the whole subexponential class S as long as one of F1, . . . , Fn

dominates all of the others; see Embrechts and Goldie (1980) and Cline (1986).

We consider to what extent the random variables X1, . . . , Xn can be dependent while

relation (16) remains valid. The context of this section is based on Ko and Tang (2008),

Chen and Yuen (2009), and Geluk and Tang (2009).

In the first result below we consider the case Fk ∈ D ∩ L for all k = 1, . . . , n. As for

the dependence structure between X1, . . . , Xn, we assume that:

The relation

lim
xi∧xj→∞

Pr (Xi > xi | Xj > xj) = 0 Assumption A

holds for all 1 ≤ i 6= j ≤ n.

Assumption A allows a wide range of dependence structures. For example, recall that an

n-dimensional distribution is called a Farlie-Gumbel-Morgenstern (FGM) distribution if

it has the form

F (x1, . . . , xn) =
n∏

k=1

Fk(xk)

1 +
∑

1≤i<j≤n

aijFi(xi)Fj(xj)

 , (17)

where F1, . . . , Fn are the corresponding marginal distributions and aij are real numbers

fulfilling certain requirements so that F (x1, ..., xn) is a proper n-dimensional distribution.

We refer the reader to Kotz et al. (2000) for a general account on multivariate FGM

distributions. Clearly, if the random variables X1, . . . , Xn follow a joint n-dimensional

FGM distribution (17), then for all 1 ≤ i 6= j ≤ n, the random variables Xi and Xj follow

the joint distribution

Fij(xi, xj) = Fi(xi)Fj(xj)
(
1 + aijFi(xi)Fj(xj)

)
,

so that Assumption A is satisfied.

Intuitively, Assumption A requires that the dependence structure between X1 and X2

should not be too strongly positive. Hence, it excludes extremely positive dependence

structures such as comonotonicity.

Remark 1 For simplicity, let F1 and F2 be absolutely continuous and let X1 and X2 be

dependent according to a copula C(u1, u2) for (u1, u2) ∈ [0, 1]2. Thus, the joint distribution

of X1 and X2 is given by

H(x1, x2) = C(F1(x1), F2(x2));

see, e.g.page 15 of Nelsen (2006). Let U1 = F1(X1) and U2 = F2(X2), so that they are two

uniform random variables following the joint distribution C(u1, u2). Under Assumption
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A, it is clear that X1 and X2 are tail independent in the sense that the (upper) tail

dependence measure, defined by

χ = lim
u→1

Pr (U2 > u|U1 > u) ,

is equal to 0. �

Theorem 2 If Fk ∈ D ∩ L for all k = 1, . . . , n and Assumption A holds, then relation

(16) holds.

Proof of Theorem 2. Clearly,

Pr (Sn > x) ≥ Pr
(

max
1≤i≤n

Xi > x

)
∼

n∑
i=1

Fi(x). (18)

On the other hand, choose a function a(·) : [0,∞) → [0,∞) such that the items in (4)

hold for all F1, . . . , Fn. We find that

Pr (Sn > x) ≤ Pr
(

max
1≤i≤n

Xi > x− a(x)
)

+ Pr
(
Sn > x, max

1≤i≤n
Xi ≤ x− a(x)

)
= I1(x) + I2(x).

For I1(x), we have

I1(x) ∼
n∑

i=1

Fi(x− a(x)) ∼
n∑

i=1

Fi(x).

To deal with I2(x), without loss of generality we assume n ≥ 2. By Assumption A,

I2(x) = Pr
(
Sn > x, max

1≤i≤n
Xi >

x

n
, max
1≤i≤n

Xi ≤ x− a(x)
)

≤
n∑

i=1

Pr
(
Sn −Xi > a(x), Xi >

x

n

)
≤

n∑
i=1

∑
j:1≤j≤n,j 6=i

Pr
(
Xj >

a(x)
n− 1

, Xi >
x

n

)

≤ o(1)
n∑

i=1

∑
j:1≤j≤n,j 6=i

Pr
(
Xi >

x

n

)
≤ o(1)

n∑
i=1

Fi(x),

where the last step is due to the property of the class D as described in (5). We conclude

that

Pr (Sn > x) .
n∑

i=1

Fi(x).

This ends the proof of Theorem 2. �
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The assumption Fk ∈ D∩L for all k = 1, . . . , n in Theorem 2 indicates that their tails

behave essentially like power functions. Hence, some important subexponential distribu-

tions such as lognormal and Weibull distributions are unfortunately excluded.

We then attempt to establish relation (16) for the case of subexponential marginal

distributions. In doing so, however, we have to strengthen the assumption of dependence

from Assumption A to the following:

There exist positive constants x0 and c such that the inequality

Pr (Xi > xi |Xj = xj with j ∈ J) ≤ cFi(xi) Assumption B

holds for all 1 ≤ i ≤ n, ∅ 6= J ⊂ {1, . . . , n}\{i}, xi > x0, and xj > x0 with

j ∈ J .

When xj is not a possible value of Xj , i.e. Pr (Xj ∈ ∆) = 0 for some open set ∆ containing

xj , the conditional probability in Assumption B is simply understood as 0.

This dependence structure is related to the so-called negative (or positive) regression

dependence introduced by Lehmann (1966). In particular, it is easy to check that this

assumption is still satisfied if the random variablesX1, . . . , Xn follow a joint n-dimensional

FGM distribution (17) whose marginal distributions Fk for k = 1, . . . , n are absolutely

continuous. Obviously, Assumption B implies Assumption A.

Theorem 3 Let X1, . . . , Xn be n nonnegative random variables with distributions F1,

. . . , Fn, respectively. If Fi ∗ Fj ∈ S for all 1 ≤ i, j ≤ n and Assumption B holds, then

relation (16) holds.

Note that, due to the fact that the class S is not closed under convolution (see Leslie

(1989)), the condition Fi ∗ Fj ∈ S for all 1 ≤ i 6= j ≤ n in Theorem 3 is necessary. Note

also that Fi ∗ Fi ∈ S implies Fi ∈ S; see Embrechts et al. (1979). In the proof below, we

write Sn,k = Sn −Xk and S∗n,k = S∗n −X∗
k for every k = 1, . . . , n.

Lemma 2 If Fk ∈ L for all k = 1, . . . , n and Assumption B holds, then there exist positive

constants x0 and dn such that the inequality

Pr (Sn,k > x |Xk = xk) ≤ dn Pr
(
S∗n,k > x

)
(19)

holds for all k = 1, . . . , n, x > x0, and xk > x0.

Proof of Lemma 2. We proceed the proof by induction in n. For n = 2, the statement

follows directly from Assumption B. Assume that the statement holds for n−1. To prove
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it for n, without loss of generality we only show (19) for k = n. Clearly,

Pr (Sn−1 > x |Xn = xn)

= Pr
(
Sn−1 > x, min

1≤i≤n−1
Xi ≤ x0

∣∣∣∣Xn = xn

)
+ Pr

(
Sn−1 > x, min

1≤i≤n−1
Xi > x0

∣∣∣∣Xn = xn

)
= J1(x) + J2(x).

By our inductive assumption, it holds for all xn > x0 and all large x that

J1(x) ≤
n−1∑
i=1

Pr (Sn−1,i > x− x0 |Xn = xn)

≤ dn−1

n−1∑
i=1

Pr
(
S∗n−1,i > x− x0

)
. dn−1(n− 1) Pr

(
S∗n−1 > x

)
,

where at the last step we used Lemma 4.2 of Ng et al. (2002), which says that the convo-

lution of long-tailed distributions is still long tailed. For J2(x), because of Assumption B,

by conditioning also on the random variables X2, . . . , Xn−1, we have

J2(x) ≤ cPr
(
X∗

1 +X2 + · · ·+Xn−1 > x, min
2≤i≤n−1

Xi > x0

∣∣∣∣Xn = xn

)
.

Repeating this procedure by conditioning on X∗
1 , X3, . . . , Xn−1, we further have

J2(x) ≤ c2 Pr
(
X∗

1 +X∗
2 +X3 + · · ·+Xn−1 > x, min

3≤i≤n−1
Xi > x0

∣∣∣∣Xn = xn

)
.

In this way, we eventually obtain that

J2(x) ≤ cn−1 Pr
(
S∗n−1 > x

)
.

From these estimates we conclude that relation (19) holds with k = n. �

Lemma 3 Let Fi ∗ Fj ∈ S for all 1 ≤ i, j ≤ n. Then, for every function a(·) : [0,∞) →
[0,∞) with a(x) →∞ and for every 1 ≤ j ≤ n,

Pr
(
S∗n > x, a(x) < X∗

j ≤ x
)

= o(1)
n∑

k=1

Fk(x). (20)

Proof of Lemma 3. Note that

Pr
(
S∗n > x, a(x) < X∗

j ≤ x
)

≤
∫ x

0
Pr
(
x− y < S∗n,j ≤ x

)
Fj(dy) + Pr

(
S∗n,j > x

)
Fj(a(x))

= Pr (S∗n > x)− Pr
(
S∗n,j ∨X∗

j > x
)

+ Pr
(
S∗n,j > x

)
Fj(a(x)).
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Therefore, relation (20) follows by using Theorem 3 of Geluk and De Vries (2006), which

shows that under the current conditions, the distribution of S∗n,j is subexponential and its

tail is asymptotic to the sum of the tails of all individual summands. �

Proof of Theorem 3. Note that the condition Fk ∈ L for all k = 1, . . . , n suffices for

the proof of (18). We only need to establish the asymptotic relation

Pr(Sn > x) .
n∑

k=1

Fk(x). (21)

As before, choose a function a(·) : [0,∞) → [0,∞) such that the items in (4) hold for all

F1, . . . , Fn. For all large x,

Pr (Sn > x) ≤ Pr
(

max
1≤k≤n

Xk > x− a(x)
)

+ Pr
(
Sn > x, max

1≤k≤n
Xk ≤ x− a(x)

)
≤

n∑
k=1

Pr (Xk > x− a(x)) + Pr
(
Sn > x, a(x) < max

1≤k≤n
Xk ≤ x− a(x)

)

.
n∑

k=1

Fk(x) +
n∑

k=1

Pr(Sn > x, a(x) < Xk ≤ x− a(x))

=
n∑

k=1

Fk(x) +
n∑

k=1

∫ x−a(x)

a(x)
Pr(Sn,k > x− y|Xk = y)Fk(dy).

Using Lemmas 2 and 3, the last term above is bounded by

dn

n∑
k=1

∫ x−a(x)

a(x)
Pr
(
S∗n,k > x− y

)
Fk(dy) = dn

n∑
k=1

Pr (S∗n > x, a(x) < X∗
k < x− a(x))

= o(1)
n∑

k=1

Fk(x).

This proves relation (21). �

Recently, Asmussen and Rojas-Nandayapa (2008) studied the tail probability Pr(Sn >

x) for a special case with dependent lognormal marginals, i.e. Xk = eYk for k = 1, . . . , n

with (Y1, . . . , Yn)> following a multivariate normal distribution with mean vector (µ1, . . . , µn)>

and covariance matrix (σij)n×n. Note that in this case each Xk has a tail

Fk(x) = F (x;µk, σkk) ∼
√
σkk√

2π log x
exp

{
−(log x− µk)2

2σkk

}
.

Their result is

Pr(Sn > x) ∼ mnF (x;µ, σ2), (22)

where

σ2 = max
1≤k≤n

σkk, µ = max
k:σkk=σ2

µk, mn = #{k : σkk = σ2, µk = µ}.
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It is easy to see that the right-hand side of (22) is asymptotically equal to
∑n

k=1 Fk(x).

Closely related discussions can also be found in Albrecher et al. (2006), Foss and

Richards (2008), and Gao et al. (2009).

These results demonstrate that the heavy-tailed marginal distributions eliminate the

strength of the dependence of the summands. Heuristically, the more heavy-tailed the

marginal distributions are the more robust the asymptotic relation (16) is with respect to

the underlying dependence.

A more interesting question would be how to capture the strength of the dependence

of the summands when studying the tail probability of the sum. So far there are some

discussions in the literature; see Wüthrich (2003), Alink et al. (2004), Resnick (1987,

2004), Barbe et al. (2006), Malevergne and Sornette (2006), among others. Most of

these works use copulas to describe the dependence of the random variables and derive an

asymptotic formula which is usually not transparent.

4 Tail Behavior of Products

This section is based the recent work of Jiang and Tang (2009). Let X and Y be two

nonnegative random variables with distributions F and G, respectively, and let H be the

distribution of the product

Z = XY. (23)

To avoid triviality, we assume that X and Y are not degenerate at 0. The product in (23)

is one of basic elements in stochastic modelling. To describe its tail behavior is usually the

core of the study of the tail behavior of quantities containing products of random variables.

Cline and Samorodnitsky (1994) explained motivations of this study in infinite variance

regression, infinite variance time series, and infinitely divisible stochastic processes.

There are several papers studying the subexponentiality ofH for the case thatX and Y

are independent. Breiman (1965) proved that if F ∈ R−α for some α > 0 and EY α+ε <∞
for some ε > 0 then H(x) ∼ EY αF (x). Actually, the proof is a simple application of

the dominated convergence theorem guaranteed by relation (6) and the definition of the

class R. Several refined versions of Breiman’s theorem are given by Denisov and Zwart

(2007). Embrechts and Goldie (1980) proved that if F ∈ R−α for some α > 0 and either

G(x) = o(F (x)) or G ∈ R−α then H ∈ R−α. Cline and Samorodnitsky (1994) extended

the scope to the class S. Further extensions can be found in Tang (2006b, 2008).

In most practical situations, however, the random variables X and Y have to be

dependent. For example, let X be the amount transferred by an investor from a bond to

a stock at the beginning of a time period and let Pt, t ≥ 0, be the price process of the

stock. With Y = P1, the product Z defined in (23) represents the accumulated value of

this transaction at the end of the period. If the investor believes that an increase of the
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stock price is more likely then he will be willing to increase the transferred amount. In

this example, X and Y seem to be positively dependent.

For another example, let δ > 0 be a constant force of compound interest. Suppose

that a claim of size X comes at a random time τ . With Y = e−δτ , the present value of

this claim is given by Z defined in (23). In this situation, it is more reasonable to assume

that the claim size X and its waiting time τ are positively dependent, hence that X and

Y are negatively dependent.

To our surprise, we have seen no discussion in the literature focusing on the product

of dependent random variables. Available methodologies developed in the references cited

above can hardly be used to deal with dependent cases. An obvious reason is that the

relation

H(x) =
∫ ∞

0
F (x/y)G(dy), x ≥ 0,

which is the starting point of those works, does not hold any more.

We assume that X and Y follow a generalized Farlie-Gumbel-Morgenstern (FGM)

distribution of the form

Πθ (x, y) = F (x)G(y) [1 + θA (F (x))B (G(y))] , (24)

where the parameter θ, taking values from [−1, 1], and the kernels A(·) and B(·), with

A(1) = B(1) = 0, are suitably chosen such that Πθ(·, ·) is a proper bivariate distribution.

Clearly, F and G are the marginal distributions of Πθ(·, ·). The flexibility in choosing the

parameter and kernels provides an easy manner to construct bivariate distributions with

a variety of dependence structures. This model was originally introduced by Morgenstern

(1956) for A (u) = B (u) = 1 − u and investigated by Gumbel (1960) for exponential

marginal distributions. The subsequent generalization to the current form (24) is due to

Farlie (1960). For more recent discussions on generalized FGM distributions, the reader is

referred to Huang and Kotz (1999), Bairamov et al. (2001), Amblard and Girard (2002),

and Rodŕıguez-Lallena and Úbeda-Flores (2004), among others.

We are interested in the question how to capture the impact of the dependence of X

and Y in this model on the tail behavior of their product Z. We shall derive an explicit

asymptotic formula for the tail probability of Z. In comparison to the asymptotic formula

for the independence case, ours contains an extra factor representing the impact of the

dependence of X and Y .

By Theorem 2.3 of Rodŕıguez-Lallena and Úbeda-Flores (2004) (see also discussions of

Amblard and Girard (2002)), for {Πθ(·, ·) : θ ∈ [−1, 1]} to be a family of proper bivariate

distributions, it is sufficient that the following conditions hold simultaneously:

(b1) uA (u) and uB (u) are absolutely continuous on [0, 1],

(b2) |d (uA (u)) /du| ∨ |d (uB (u)) /du| ≤ 1 almost everywhere for u ∈ [0, 1], and
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(b3) |uA (u)| ∨ |uB (u)| ≤ u ∧ (1− u) for all u ∈ [0, 1].

From now on, we assume that (b1)-(b3) hold. Denote by λA and λB the left derivatives

of A (u) and B (u) at u = 1. By (b2), we have |λA| ∨ |λB| ≤ 1. Introduce

FA(x) , F (x) [1−A (F (x))] , GB(y) , G(y) [1−B (G(y))] , x, y ≥ 0, (25)

which are two proper distributions supported on [0,∞) because of (b1)-(b3). Then, intro-

duce two random variables XA and YB distributed by FA and GB, respectively. We write

µY (α) = EY α and µYB
(α) = EY α

B for 0 ≤ α <∞.

Denote by

ŷ = sup{y|G(y) < 1} ∈ (0,∞]

the right endpoint of the support of G with mass p̂ = Pr (Y = ŷ). Note that p̂ = 0 when

ŷ = ∞.

Lemma 4 Let Y and YB be two nonnegative random variables with distributions G and

GB introduced in (25), respectively, where B(·) is a function satisfying (b1)-(b3).

(i) For every 0 ≤ α <∞, if µY (α) <∞ then µYB
(α) <∞;

(ii) If Y has finite moments of all orders 0 ≤ α <∞ then

lim
α↗∞

µYB
(α)

µY (α)
= 1 + (1− p̂)

B (1− p̂)
p̂

. (26)

Proof of Lemma 4. Regardless of ŷ <∞ or ŷ = ∞, we have

lim
y↗ŷ

GB(y)
G(y)

= lim
y↗ŷ

(
1 +

G(y)B (G(y))
G(y)

)
= 1 + (1− p̂)

B (1− p̂)
p̂

<∞. (27)

Therefore, µY (α) <∞ implies µYB
(α) <∞. This proves (i).

To prove (ii), arbitrarily choose y1 and y2 such that 0 < y1 < y2 < ŷ ≤ ∞. Then, as

α↗∞, ∫ y1

0 G(y)yα−1dy∫ ŷ
y1
G(y)yα−1dy

≤
∫ y1

0 G(y)yα−1dy∫ y2

y1
G(y)yα−1dy

≤
∫ y1

0 G(y)yα−1dy
G(y2)yα−1

1 (y2 − y1)
→ 0.

Similarly,

lim
α↗∞

∫ y1

0 GB(y)yα−1dy∫ ŷ
y1
GB(y)yα−1dy

= 0.

Hence as α↗∞,

µYB
(α)

µY (α)
=

∫ ŷ
0 GB(y)yα−1dy∫ ŷ
0 G(y)yα−1dy

∼
∫ ŷ
y1
GB(y)yα−1dy∫ ŷ

y1
G(y)yα−1dy

.

Moreover, it follows from (27) that

lim
y1↗ŷ

∫ ŷ
y1
GB(y)yα−1dy∫ ŷ

y1
G(y)yα−1dy

= 1 + (1− p̂)
B (1− p̂)

p̂
.
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Finally, by a standard argument on upper and lower bounds, we obtain relation (26). This

proves (ii). �

As before, denote by (X∗, Y ∗) the independent version of (X,Y ) and by H∗ the dis-

tribution of X∗Y ∗. We shall focus on describing the limit

lim
x→∞

H(x)
H∗(x)

= lim
x→∞

Pr (XY > x)
Pr (X∗Y ∗ > x)

(28)

under the assumption that F ∈ R−α for some 0 ≤ α ≤ ∞. This limit, if it exists,

provides a natural measure for the impact of the underlying dependence structure. For

this purpose, if µY (α) <∞ (hence µYB
(α) <∞ by Lemma 4(i)), we define

Iθ (α) = 1− θλA

(
µYB

(α)
µY (α)

− 1
)
. (29)

In this case, we have 0 ≤ Iθ (α) ≤ 2 since, by (b3),∣∣∣∣µYB
(α)

µY (α)
− 1
∣∣∣∣ ≤ sup

0≤u≤1

∣∣∣∣uB (u)
1− u

∣∣∣∣ ≤ 1, (30)

where and throughout, by convention, B (u) / (1− u) = −λB when u = 1. If µY (α) <∞
for all 0 ≤ α <∞, then by Lemma 4(ii), the function Iθ (α) converges as α↗∞ with

Iθ (∞) = 1− θλA (1− p̂)
B (1− p̂)

p̂
, (31)

which further equals 1 + θλAλB (hence is well defined) for p̂ = 0.

Recall that a(x) ∼ b(x) stands for a(x)/b(x) → 1. Occasionally, to make some formulas

look stringent, we still write a(x) ∼ cθb(x) even if the involved coefficient cθ could equal 0

for certain values of the parameter θ, but its exact meaning should be a(x)/b(x) → cθ in

this case. Now we are ready to give the following result, which shows that the quantity

Iθ (α) defined by (29) and (31) is the desired limit in (28):

Theorem 4 Recall (23) in which X and Y follow a generalized FGM distribution of the

form (24) with F ∈ R−α for some 0 ≤ α ≤ ∞. Then, the relation

H(x) ∼ Iθ (α)H∗(x) (32)

holds with Iθ (α) given by (29) and (31) under one of the following two sets of conditions:

(i) 0 ≤ α <∞ and µY (α+ ε) <∞ for some ε > 0;

(ii) α = ∞ and G(ux) = o
(
H∗(x)

)
for all u > 0.

For case (i), by Breiman’s theorem, relation (32) can be rewritten as

H(x) ∼ ((1 + θλA)µY (α)− θλAµYB
(α))F (x). (33)
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For case (ii), the condition on G is automatic if ŷ < ∞. Furthermore, Corollary 2.1 of

Tang (2006b) shows that this condition on G holds if G (vx) = o
(
F (x)

)
for some v > 0

or G (vx) = o
(
G(x)

)
for some v > 1.

Remark 2 One should be aware that Iθ (α) could equal 0 for certain rare cases. For

example, let A (u) = 1− u, 1/2 ≤ p0 = G{0} < 1, and

B (u) =
{

(1− p0)/p0, 0 ≤ u ≤ p0;
(1− u)/u, p0 < u ≤ 1.

Then, (b1)-(b3) hold but Iθ (α) = 0 for all relevant values of α ∈ [0,∞] when θ = −1.

Recall that, in case Iθ (α) = 0, relation (32) should be understood asH(x) = o
(
H∗(x)

)
.

We shall not repeat this explanation in the sequel but we should always bear it in mind.

Nevertheless, from (29) and (30), for Iθ (α) = 0 it is necessary that |θ| = 1, |λA| = 1, and

sup0≤u≤1 |uB (u) / (1− u)| = 1. For all other cases we have Iθ (α) > 0. �

Proof of Theorem 4. In view of (24), we have

Πθ (ds,dt) = (1 + θ)F (ds)G(dt)−θFA(ds)G(dt)−θF (ds)GB(dt)+θFA(ds)GB(dt). (34)

Therefore,

H(x) = (1 + θ)H∗(x)− θPr (X∗
AY

∗ > x)− θPr (X∗Y ∗B > x) + θPr (X∗
AY

∗
B > x) . (35)

By Breiman’s theorem, for case (i) the relation G(ux) = o
(
H∗(x)

)
still holds for all u > 0.

Thus, for both cases, by Lemma 3.2 of Tang (2006b) there is a function a(·) : [0,∞) →
[0,∞) such that a(x) = o(x) and G(a(x)) = o

(
H∗(x)

)
. For the second term on the

right-hand side of (35), with â(x) = a(x) ∧ ŷ we have

Pr (X∗
AY

∗ > x) =
∫ â(x)

0
FA(x/t)G(dt) + o

(
H∗(x)

)
= (1− λA + o (1))H∗(x). (36)

Now we deal with the third term on the right-hand side of (35) for the cases 0 ≤ α < ∞
and α = ∞ separately. When 0 ≤ α <∞, by Lemma 4(i) and Breiman’s theorem,

lim
x→∞

Pr(X∗Y ∗B > x)
H∗(x)

=
µYB

(α)
µY (α)

. (37)

When α = ∞, by Lemma 3.1(ii) of Tang (2006a), it holds for every y ∈ (0, ŷ) that

Pr(X∗Y ∗B > x)
H∗(x)

∼

∫ x/y
x/ŷ GB(x/s)F (ds)∫ x/y
x/ŷ G(x/s)F (ds)

.

This, together with relation (27), the arbitrariness of y, and a standard argument on upper

and lower bounds, gives that

lim
x→∞

Pr(X∗Y ∗B > x)
H∗(x)

= 1 + (1− p̂)
B (1− p̂)

p̂
.
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Recalling (26), this indicates that relation (37) still holds for α = ∞. To deal with the

fourth term on the right-hand side of (35), notice that, by (27), GB(a(x)) = O
(
G(a(x))

)
=

o
(
H∗(x)

)
. Using the ideas in relations (36) and (37), in turn,

Pr (X∗
AY

∗
B > x)

H∗(x)
= (1 + o (1))

∫ â(x)
0 FA(x/t)GB(dt)∫ â(x)
0 F (x/t)GB(dt)

Pr (X∗Y ∗B > x)
H∗(x)

→ (1− λA)
µYB

(α)
µY (α)

. (38)

Plugging relations (36)-(38) into relation (35), we obtain relation (32) for both cases of

Theorem 4. �

Let {(X,Y ), (Xn, Yn), n = 1, 2, . . .} be a sequence of i.i.d. random pairs with nonnega-

tive components. Now we turn to study the random difference equation

S0 = 0, Sn = (Sn−1 +Xn)Yn, n = 1, 2, . . . . (39)

Iterating (39) yields that

Sn =
n∑

i=1

Xi

n∏
j=i

Yj =D

n∑
i=1

Xi

i∏
j=1

Yj , n = 1, 2, . . . , (40)

where =D denotes equality in distribution. Recalling Example 1, the sum on the right-

hand side of (40) can be interpreted as discounted aggregate losses by time n of an insurer

in a stochastic economic environment.

In the sequel, for each i = 1, 2, . . ., we write H∗
i as the distribution of X∗

i

∏i
j=1 Y

∗
j .

Note that H∗
1 = H∗.

Theorem 5 Consider the random difference equation (39). Assume that (X,Y ) follows

a generalized FGM distribution of the form (24) with F ∈ S ∩R−α for some 0 ≤ α ≤ ∞.

Then for each n = 1, 2, . . ., the relation

Pr(Sn > x) ∼ Iθ (α)
n∑

i=1

H∗
i (x) (41)

holds with Iθ (α) given by (29) and (31) under one of the following two sets of conditions:

(i) 0 ≤ α <∞ and µY (α+ ε) <∞ for some ε > 0;

(ii) α = ∞ and there are functions a(·) and b(·) : [0,∞) → [0,∞) such that the

following items hold simultaneously:

(c1) b(x) = o(x),

(c2) a(x) = o (b(x)),

(c3) G (a(x)) = o
(
H∗(x)

)
, and

(c4) H∗ (x− b (x)) ∼ H∗(x).
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The proof of this theorem is omitted. Similar results but only for the independent case

can be found in Tang and Tsitsiashvili (2003, 2004). The following corollary and example

show two special cases of Theorem 5(ii):

Corollary 1 Consider the random difference equation (39) with (X,Y ) following a gen-

eralized FGM distribution of the form (24). If F ∈ S ∩ R−∞ and p̂ > 0 (hence ŷ < ∞),

then for each n = 1, 2, . . . ,

Pr(Sn > x) ∼
(

1− θλA (1− p̂)
B (1− p̂)

p̂

) n∑
i=1

p̂iF
(
x/ŷi

)
. (42)

Proof of Corollary 1. By Corollary 2.5 of Cline and Samorodnitsky (1994) and Lemma

2.2 of Tang and Tsitsiashvili (2004), we have H∗
i ∈ S ∩ R−∞ for each i = 1, . . . , n.

Then, it is easy to see that all conditions of Theorem 5(ii) hold. Hence by the dominated

convergence theorem,

H∗
i (x) ∼ p̂iF

(
x/ŷi

)
, i = 1, . . . , n.

Plugging these asymptotic relations to (41) gives (42). �

Example 5 Consider the random difference equation (39) with (X,Y ) following a general-

ized FGM distribution of the form (24). Let F and G be two lognormal distributions with

parameters
(
µ1, σ

2
1

)
and

(
µ2, σ

2
2

)
, respectively. Then, the product X∗Y ∗ also follows a log-

normal distribution with parameters
(
µ1 + µ2, σ

2
1 + σ2

2

)
. From Section 3.3 of Embrechts et

al. (1997) we know that H∗ (x− b (x)) ∼ H∗(x) holds for every b(x) = o (x/ lnx). Choose

a(x) = xσ2(σ2
1+σ2

2)
−0.5

+ε and b(x) = xσ2(σ2
1+σ2

2)
−0.5

+2ε

for some ε > 0 such that σ2

(
σ2

1 + σ2
2

)−0.5 + 2ε < 1. Direct calculation shows that

G (a(x))
H∗(x)

∼

(
1 +

√
σ2

1 + σ2
2

σ2
ε

)
exp

{
(lnx− µ1 − µ2)

2

2
(
σ2

1 + σ2
2

) − (ln a(x)− µ2)
2

2σ2
2

}
= o(1).

Thus, all conditions of Theorem 5(ii) hold. For this case, relation (41) becomes

Pr (Sn > x) ∼ (1 + θλAλB)
n∑

i=1

Φ

(
lnx− µ1 − iµ2√

σ2
1 + iσ2

2

)
,

where Φ denotes the standard normal distribution. �

The following result shows that confining the discussions to the regular variation case

we can enhance the asymptotic relation (41) to be uniform for all n = 1, 2, . . .:
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Theorem 6 Consider the random difference equation (39). Assume that (X,Y ) follows

a generalized FGM distribution of the form (24) with F ∈ R−α for some 0 < α < ∞,

µY (α) < 1, and µY (α+ ε) <∞ for some ε > 0. Then, the relation

Pr (Sn > x) ∼ (1− µn
Y (α))

(1 + θλA)µY (α)− θλAµYB
(α)

1− µY (α)
F (x) (43)

holds uniformly for all n = 1, 2, . . ., i.e.,

lim
x→∞

sup
n≥1

∣∣∣∣∣ Pr (Sn > x)(
1− µn

Y (α)
)
F (x)

− (1 + θλA)µY (α)− θλAµYB
(α)

1− µY (α)

∣∣∣∣∣ = 0.

The proof of this theorem is also omitted.

The uniformity of this result has significant theoretical and practical interests. For

example, introduce τ to be a positive integer-valued random variable independent of the

sequence {(X,Y ) , (Xi, Yi) , i = 1, 2, . . .}. Then, under the conditions of Theorem 8, a

straightforward application of the uniformity of relation (43) gives that

Pr (Sτ > x) ∼
(
1− Eeτ ln µY (α)

) (1 + θλA)µY (α)− θλAµYB
(α)

1− µY (α)
F (x).

Moreover, taking n = ∞ into relation (43) yields that

Pr (S∞ > x) ∼ (1 + θλA)µY (α)− θλAµYB
(α)

1− µY (α)
F (x),

which corresponds to a special case of Theorem 1 of Grey (1994).

5 Tail Behavior of Finite Sums with Random Weights

In this section we propose to consider, as a special sum of dependent random variables,

the following randomly weighted sum:

S(w)
n = W1X1 + · · ·+WnXn, (44)

where X1, . . . , Xn, called the primary random variables, are nonnegative, i.i.d., with

common distribution F ∈ S, while W1, . . . , Wn, called the weights, are nonnegative and

random. The dependence of this model comes from the weights and the relationship

between the primary random variables and the weights.

There are two extreme cases. The first case is that the weights are also mutually

independent and are independent of the primary random variables. Then, S(w)
n is reduced

to an independent sum. Using some ideas in Cline and Samorodnitsky (1994) and Tang

(2006b, 2008), it is easy to establish the subexponentiality of the products W1X1, . . . ,

WnXn, hence to get

Pr
(
S(w)

n > x
)
∼

n∑
k=1

Pr (WkXk > x) . (45)
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The second case is that the weights are mutually ‘perfectly’ dependent but are still inde-

pendent of the primary random variables. Here the ‘perfect’ dependence, which is called

comonotonicity by people working in financial risk management (see Dhaene et al. (2002a,

2002b)), means that the weights can be expressed as non-decreasing functions of a com-

mon random variable, say W . For this case, by taking conditional expectation on the

common random variable W , it is not difficult to establish relation (45) again.

The analysis for the two cases above indicates that the asymptotic relation (45) is very

stable with respect to the dependence of the weights. The two theorems below demonstrate

this again.

Theorem 7 If F ∈ S and the nonnegative random variables W1,. . . , Wn are bounded

from above, then relation (45) holds.

An important feature of Theorem 7 is that it does not require any specific information

about the dependence structure of W1,. . . , Wn.

The following lemma is from Tang and Tsitsiashvili (2003a, Proposition 5.1):

Lemma 5 Let {Xk, k = 1, . . . , n} be n i.i.d. random variables with common distribution

F ∈ S. Then for any fixed 0 < a ≤ b <∞, k = 1, . . . , n, the relation

Pr

(
n∑

k=1

wkXk > x

)
∼

n∑
k=1

F (x/wk)

holds uniformly for (w1, . . . , wn) ∈ [a, b]n.

Proof of Theorem 7. Without loss of generality, we assume that the random variables

W1,. . . , Wn are bounded from above by 1.

We derive the lower bound for (45). By Bonferroni’s inequality,

Pr (Sw
n > x) ≥ Pr

(
n⋃

k=1

(WkXk > x)

)

≥
n∑

k=1

Pr (WkXk > x)−
∑

1≤i6=j≤n

Pr (WiXi > x,WjXj > x)

≥
n∑

k=1

Pr (WkXk > x)−
∑

1≤i6=j≤n

Pr (WiXi > x) Pr (Xj > x)

∼
n∑

k=1

Pr (WkXk > x) .

To obtain a corresponding upper bound, first we assume that the random weights

involved are positive. Let 0 < ε < 1 be arbitrarily fixed. For any set I ⊂ {1, . . . , n},
denote

∆I(ε) = (Wi ≤ ε whenever i ∈ I, Wj > ε whenever j /∈ I) .
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We derive

Pr (Sw
n > x)

= Pr

(
n∑

k=1

WkXk > x,Wj > ε for all j

)
+

∑
φ6=I⊂{1,...,n}

Pr

(
n∑

k=1

WkXk > x,∆I(ε)

)
= I1(x) + I2(x). (46)

Clearly, by Lemma 5,

I1(x) ∼
n∑

k=1

Pr (WkXk > x,Wj > ε for all j) .

For I2(x), by Lemma 5 again we have

I2(x) ≤
∑

φ6=I⊂{1,...,n}

Pr

(
ε
∑
k∈I

Xk +
∑
k/∈I

WkXk > x,∆I(ε)

)

∼
∑

φ6=I⊂{1,...,n}

(∑
k∈I

Pr (εXk > x,∆I(ε)) +
∑
k/∈I

Pr (WkXk > x,∆I(ε))

)
= I21(x) + I22(x).

For I21(x), we have

I21(x) =
∑

φ6=I⊂{1,...,n}

Pr (∆I(ε))
∑
k∈I

Pr (εXk > x,Wk > ε)
Pr (Wk > ε)

≤
∑

φ6=I⊂{1,...,n}

Pr (∆I(ε))
∑
k∈I

Pr (WkXk > x)
Pr (Wk > ε)

≤ 1
Pr (mink=1,...,nWk > ε)

∑
φ6=I⊂{1,...,n}

Pr (∆I(ε))
∑
k∈I

Pr (WkXk > x) .

We turn to I22(x).

I22(x) =
n∑

k=1

∑
φ6=I⊂{1,...,n},k /∈I

Pr (WkXk > x, ∆I(ε))

=
n∑

k=1

Pr (WkXk > x, Wk > ε, Wi ≤ ε for some i = 1, . . . , n) .

Substituting I21(x) and I22(x) into I2(x) and then substituting I1(x) and I2(x) into (46),
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we obtain that

Pr (Sw
n > x) .

n∑
k=1

Pr (WkXk > x,Wj > ε for all j)

+
1

Pr (mink=1,...,nWk > ε)

∑
φ6=I⊂{1,...,n}

Pr (∆I(ε))
∑
k∈I

Pr (WkXk > x)

+
n∑

k=1

Pr (WkXk > x, Wk > ε, Wi ≤ ε for some i = 1, . . . , n)

≤ 1
Pr (mink=1,...,nWk > ε)

∑
φ6=I⊂{1,...,n}

Pr (∆I(ε))
∑
k∈I

Pr (WkXk > x)

+
n∑

k=1

Pr (WkXk > x) .

Since limε→0+ Pr (∆I(ε)) = 0 for any I ⊂ {1, . . . , n}, it follows that

Pr (Sw
n > x) .

n∑
k=1

Pr (WkXk > x) .

Now we consider the general case where the random weights may take value 0 with

positive probability. For an arbitrary set J ⊂ {1, . . . , n}, denote

DJ = (Wi = 0 whenever i ∈ J, Wj > 0 whenever j /∈ J) .

Then,

Pr (Sw
n > x) =

∑
J {1,...,n}

Pr

(
n∑

k=1

WkXk > x,DJ

)

=
∑

J {1,...,n}

Pr

∑
k/∈J

WkXk > x,DJ


∼

∑
J {1,...,n}

∑
k/∈J

Pr (WkXk > x,DJ)

=
n∑

k=1

∑
J⊂{1,...,n},k /∈J

Pr (WkXk > x,DJ)

=
n∑

k=1

Pr (WkXk > x) .

This ends the proof of Theorem 7. �

Theorem 8 If F ∈ A and there is a positive function a(·) with a(x) = o(x) and a(x) →∞
such that for each k = 1, . . . , n,

Pr(Wk > a(x)) = o(Pr(WkX > x)),

then relation (45) holds.
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Lemma 6 Let {Xk, k = 1, . . . , n} be n i.i.d. nonnegative random variables with common

distribution F ∈ A. Then,

lim
x→∞

sup
0<r1,...,rn≤1

Pr (r1X1 + · · ·+ rnXn > x)
Pr (r1X1 > x) + · · ·+ Pr (rnXn > x)

≤ 1. (47)

Proof of Lemma 6. Without loss of generality, we assume r1 = 1. Similarly as in the

proof of Theorem 7, for any ε > 0 and I ⊂ {2, . . . , n}, write

∆I = (ri ≤ ε whenever i ∈ I and rj > ε whenever j /∈ I) .

Clearly,

lim
x→∞

sup
0<r2,...,rn≤1

= lim
x→∞

max
I

sup
∆I

= max
I

lim
x→∞

sup
∆I

.

Applying Lemma 5, we obtain

lim sup
x→∞

sup
ε≤r2,...,rn≤1

Pr (X1 + r2X2 + · · ·+ rnXn > x)
Pr (X1 > x) + Pr (r2X2 > x) + · · ·+ Pr (rnXn > x)

= 1.

For a nonempty set I ⊂ {2, . . . , n}, applying inequality (6), we have for some 0 < p < J−F
and C1 > 0,

lim sup
x→∞

sup
∆I

≤ lim sup
x→∞

Pr

(
X1 + ε

∑
i∈I
Xi +

∑
j /∈I

Xj > x

)
Pr (X1 > x) +

∑
j /∈I

Pr (Xj > x)

= lim sup
x→∞

Pr (X1 > x) +
∑
i∈I

Pr (εXi > x) +
∑
j /∈I

Pr (Xj > x)

Pr (X1 > x) +
∑
j /∈I

Pr (Xj > x)

≤ 1 + C1ε
p ‖I‖

≤ 1 + C1ε
pn.

This proves that

lim
x→∞

sup
0<r2,...,rn≤1

≤ 1 + C1ε
pn.

Hence, (47) follows. �

Proof of Theorem 8. We derive the lower bound for (45). By Bonferroni’s inequality,

Pr (Sw
n > x) ≥ Pr

(
n⋃

k=1

(WkXk > x)

)

≥
n∑

k=1

Pr (WkXk > x)−
∑

1≤i6=j≤n

Pr (WiXi > x,WjXj > x) .
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Since for any i 6= j,

Pr (WiXi > x,WjXj > x) ≤ Pr (WiXi > x,WjXj > x,Wj ≤ a(x)) + Pr (Wj > a(x))

≤ Pr (WiXi > x) Pr
(
Xj >

x

a(x)

)
+ Pr (Wj > a(x))

= o (Pr (WiXi > x) + Pr (WjXj > x)) .

This proves that

Pr (Sw
n > x) &

n∑
k=1

Pr (WkXk > x) .

Then we aim to obtain a corresponding upper bound. First we assume that the random

weights involved are positive. We derive

Pr (Sw
n > x) ≤ Pr

(
n∑

k=1

WkXk > x

)

≤ Pr

(
n∑

k=1

WkXk > x,Wk ≤ a(x)

)
+

n∑
k=1

Pr (Wk > a(x))

= Pr

(
n∑

k=1

Wk

W(n)
Xk >

x

W(n)
,W(n) ≤ a(x)

)
+ o

(
n∑

k=1

Pr (WkXk > x)

)
,

where W(n) = max{Wk; k = 1, . . . , n}. Applying Lemma 6 we have

Pr

(
n∑

k=1

Wk

W(n)
Xk >

x

W(n)
,W(n) ≤ a(x)

)
.

n∑
k=1

Pr
(
Wk

W(n)
Xk >

x

W(n)
,W(n) ≤ a(x)

)

≤
n∑

k=1

Pr (WkXk > x) .

Finally, for the general case where the random weights may take value 0 with positive

probability, the extension can be done by following the last step of the proof of Theorem

7. �

All these results demonstrate that the heavy tails of the primary random variables

eliminate the strength of the dependence of the weights.

6 Tail Behavior of Infinite Sums with Random Weights

A challenging question is how to extend the results of the previous section to the infinite

sum

S(w) =
∞∑

k=1

WkXk, (48)

where the primary random variables X1, X2, . . . are nonnegative, i.i.d., with common dis-

tribution F ∈ S, while the weights W1, W2, . . . are nonnegative and random/nonrandom.
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For the case that the weights are nonrandom, the heavy-tail behavior of this sum

has been studied by many people including Rootzén (1986), Davis and Resnick (1988),

Zerner (2002), and Chen et al. (2005). For this case, the distribution of S(w) is of interest

because the marginal distribution of any stationary linear process can be represented as

the distribution of a sum of the form (48). Linear processes, however, are basic in classical

time series analysis. For example, every stationary causal ARMA process is linear with

weights which decay exponentially fast to zero; see Sections 3.1 and 13.3 of Brockwell and

Davis (1991) and Section 7.1 of Embrechts et al. (1997).

Let us concentrate on the case of random weights. For the multivariate counterpart in

which F ∈ R and the sequences {X1, X2, . . .} and {W1,W2, . . .} are independent, Resnick

and Willekens (1991) obtained an important tail asymptotic formula for S(w) under some

moment summability conditions on the weights.

The sum S(w) in (48) with random weights is closely related to the stochastic integral

Zt =
∫ t

0−
e−RsdPs, t ≥ 0, (49)

where {Pt, t ≥ 0} and {Rt, t ≥ 0} are two stochastic processes fulfilling certain require-

ments so that Z∞ is well defined. For example, if {Pt, t ≥ 0} is a compound renewal

process with i.i.d. nonnegative innovations X1, X2, . . . which consecutively arrive at the

moments 0 < τ1 < τ2 < · · · , then Zt in (49) is equal to

Zt =
∞∑

k=1

Xke−Rτk 1(τk≤t), t ≥ 0,

which corresponds to (48) with dependent weights Wk = e−Rτk 1(τk≤t) for k = 1, 2, . . ..

When {Pt, t ≥ 0} and {Rt, t ≥ 0} in (49) are two independent Lévy processes, Gjessing and

Paulsen (1997) gave a wealth of examples showing the exact distribution or the asymptotic

tail probability of Z∞. Related discussions can also be found in Dufresne (1990), Paulsen

(1993, 1997), and Nilsen and Paulsen (1996), among others. However, we notice that

none of these references paid special attention to the important case that {Pt, t ≥ 0} has

heavy-tailed jumps.

The sum S(w) in (48) is also closely related to the stochastic difference equation

Sn = (Xn + Sn−1)Yn, n = 1, 2, . . . , (50)

where (Xn, Yn), n = 1, 2, . . ., form a sequence of random vectors fulfilling certain conditions

so that Sn converges in distribution to some random variable S∞. Iterating (50) gives

Sn =
∑n

k=1Xk
∏k

i=1 Yi, which suggests that the weak limit of (50), if it exists, must be

S∞ =d

∞∑
k=1

Xk

k∏
i=1

Yi. (51)
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This corresponds to (48) with weights Wk =
∏k

i=1 Yi for k = 1, 2, . . ..

Assume that (Xn, Yn), n = 1, 2, . . ., form a sequence of i.i.d. random vectors with

generic random vector (X,Y ). For this case, it is well known that Sn weakly converges to

some random variable S∞ as n → ∞ provided that −∞ ≤ E lnY < 0 and E ln+X < ∞;

see Theorem 1.6 of Vervaat (1979). Using the Cramér condition and some other technical

assumptions, Goldie (1991) derived a celebrated formula that

Pr(S∞ > x) ∼ C+x
−α, (52)

where α and C+ are some positive constants, with α solving E|Y |α = 1 but C+ hav-

ing a rather involved form. See also Kesten (1973, 1974), Grey (1994), and Tang and

Tsitsiashvili (2004), among others.

Still assume that (Xn, Yn), n = 1, 2, . . ., are i.i.d. random vectors. We propose to study

the tail behavior of S∞ in the following steps. Assume that X follows F ∈ S and that Y

takes value in [0, 1] but is not degenerate at 0 or 1. First, by (51) it holds for every n that

S∞ =d Sn + S̃∞

n∏
i=1

Yi, (53)

where S̃∞ is an independent copy of S∞. Next, look for an independent and nonnegative

random variable X∗ such that the quotient Pr(X∗ > x)/Pr(X > x) tends to a positive

constant and that

(X +X∗)Y ≤d X
∗. (54)

For example, let F ∈ S ∩ R−∞ and p̂ = Pr (Y = 1) ∈ [0, 1). Choose some constant

a > 0 such that (1 + a)p̂ < a. For some large b > 0 such that aF (b) < 1, construct a

distribution F ∗ such that

F ∗(x) =
{

1, when x < b,

aF (x), when x ≥ b.

Then, introduce a random variable X∗ distributed by F ∗ and independent of (X,Y ). It

is easy to verify that this random variable X∗ satisfies the requirements above.

Relation (54) gives the following, in turn:

(X1 +X∗)Y1 ≤d X
∗,

(X2 +X∗)Y2 ≤d X
∗, and

X1Y1 +X2Y1Y2 +X∗Y1Y2 ≤d X
∗.

Hence, S1 ≤d X
∗ and S2 ≤d X

∗. Continuing the procedure, we see that the inequality

Sn ≤d X
∗ holds for all n. Hence, S̃∞ =d S∞ ≤d X

∗. Substituting this into (53) yields

that

S∞ ≤d Sn +X∗
n∏

i=1

Yi.
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This is a key point in the derivation as its right-hand side is a finite weighted sum, which

enables us to use Theorem 7 to derive an upper estimate as

Pr (S∞ > x) .
n∑

k=1

Pr

(
Xk

k∏
i=1

Yi > x

)
+ Pr

(
X∗

n∏
i=1

Yi > x

)
.

Upon some mild technical assumptions on Y , it is possible to show that the last term of

the above is asymptotically negligible for all large n. Hence,

Pr (S∞ > x) .
∞∑

k=1

Pr

(
Xk

k∏
i=1

Yi > x

)
=
∫ ∞

0−
F (xet)dmt,

where mt denotes the expected number of sums
∑k

i=1− log Yi falling into the interval [0, t].

The corresponding asymptotic lower bound can be established similarly. Therefore,

Pr(S∞ > x) ∼
∫ ∞

0−
F (xet)dmt. (55)

This formula looks totally different from Goldie’s (1991) formula (52). Cases for which

the renewal function mt, t ≥ 0, assumes an explicit form can be found on pages 88 and

148 of Asmussen (2003).

7 A Further Example

The example given in this section will help us understand how the results in the previous

sections work in applied fields. This example comes from a newly rising interdisciplinary

area of mathematical finance and actuarial science. It describes a stochastic economic

environment in which an insurer makes risk-free and/or risky investments. We shall derive

an asymptotic formula for the finite-time ruin probability. Such a result is important for

the insurer to determine an optimal investment strategy.

Consider an insurance business commencing at 0 with initial wealth x ≥ 0. The cash

flow of premiums less claims is modeled by a compound Poisson process of the form

Pt = ct−
Nt∑

k=1

Xk, (56)

where c ≥ 0 is a constant premium rate, {X1, X2, . . .} is a sequence of i.i.d. claim sizes

with common distribution F ∈ S, and {Nt, t ≥ 0}, independent of {X1, X2, . . .}, is a

homogeneous Poisson process with intensity λ > 0 and arrival times 0 < τ1 < τ2 < · · · .
Suppose that the insurer makes risk-free and/or risky investments. The wealth process

St, t ≥ 0, starting from S0 = x, evolves according to the stochastic differential equation

dSt = dPt + St−dRt, (57)
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where {Rt, t ≥ 0} is a stochastic process describing returns on investments. For explana-

tions of this model, see Paulsen (2002) and references therein.

For simplicity, we assume that {Rt, t ≥ 0} is a continuous semimartingale with R0 = 0

and that {Pt, t ≥ 0} and {Rt, t ≥ 0} are independent. Then, the explicit solution to

equation (57) is given by

St = eδt

(
x+

∫ t

0
e−δsdPs

)
, (58)

where eδt = exp
{
Rt − 1

2 [R,R]t
}

denotes the Doléans-Dade exponential of Rt; see e.g.

page 328 of Protter (2005). In terms of this exponential, the interpretation of the process

{Rt, t ≥ 0} is that one dollar invested at time 0 will be worth eδt dollars at time t. We

shall start with (58) instead of (57), as done by many people including Kalashnikov and

Norberg (2002).

Using (56) and (58), we have

e−δtSt = x+ c

∫ t

0
e−δsds−

∞∑
k=1

Xke−δτk 1(τk≤t). (59)

We are going to study the finite-time ruin probability defined as

ψ(x, T ) = Pr
(

inf
0<t≤T

St < 0 | S0 = x

)
, T > 0.

Consider the Black-Scholes type market consisting of a risk-free bond with a constant

force of compound interest δ > 0 and a risky stock with a price process eLt , t ≥ 0, where

{Lt, t ≥ 0} is a general stochastic process commencing at 0. We need to assume that

δt ≥ −c for some c = cT > 0 and all 0 < t ≤ T . This assumption is satisfied if the insurer

periodically (e.g.daily, not continuously) rebalances his portfolio so as to invest a constant

fraction π ∈ [0, 1) of his wealth in the stock and keep the remaining wealth in the bond.

Actually, for this investment strategy, the overall accumulation factor over one period is

eδ1 = (1− π)eδ + πeL1 .

Denote by [t] the integer part and by {t} the decimal part of t. Then, the overall accu-

mulation factor from time 0 to time t is

eδt =

 [t]∏
k=1

(
(1− π)eδ + πeLk−Lk−1

)((1− π)e{t}δ + πeLt−L[t]

)
, (60)

so that δt ≥ −c holds for some c > 0 and all 0 < t ≤ T . This periodically constant

portfolio seems more reasonable than the constant portfolio proposed by Emmer et al.

(2001) and Emmer and Klüppelberg (2004).
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From (59) we have

Pr

(∞∑
k=1

Xke−δτk 1(τk≤T )−c
∫ T

0
e−δsds > x

)
≤ ψ(x, T ) ≤ Pr

(∞∑
k=1

Xke−δτk 1(τk≤T ) > x

)
.

(61)

The two terms in the bracket on the left-hand side of (61) are not independent. However,

with a mild technical assumption on {δt, t ≥ 0} we may show that the impact of the term

c
∫∞
0 e−δsds is asymptotically negligible. Indeed, if we assume the periodically constant

portfolio above, then by (60),

c

∫ T

0
e−δsds ≤ c

1− π

∫ T

0

(
(1− π)eδ

)−[s]
ds = CT <∞.

Hence, it suffices to estimate the probability on the right-hand side of (61).

It is well known that, for the Poisson process {Nt, t ≥ 0}, the conditional distribution

of (τ1, . . . , τn) given NT = n is identical to the distribution of T multiples of the order

statistics of random variables U1, . . ., Un being i.i.d., uniformly distributed on (0, 1), and

independent of {X1, X2, . . .}; see e.g. Theorem 2.3.1 of Ross (1983). Therefore,

Pr

( ∞∑
k=1

Xke−δτk 1(τk≤T ) > x

)
=

∞∑
n=1

Pr

(
n∑

k=1

Xke−δTUk > x

)
Pr (NT = n) . (62)

This tempts us to employ the idea used in deriving (10). To overcome the difficulty

due to the dependence of e−δTU1 , . . . , e−δTUn , we consider a general weighted sum of the

form (44), where Xk, k = 1, 2, . . ., are i.i.d. nonnegative random variables with common

distribution F ∈ S, and Wk, k = 1, 2, . . ., are positive and uniformed bounded random

variables independent of Xk, k = 1, 2, . . .. Following the discussions in Section 6, it is not

difficult to prove that relation (45) holds. Furthermore, following the original proof of

inequality (9) with some extra efforts, we can prove the following: for every ε > 0, there

exists some absolute constant Cε > 0 irrespective to the distributional information of W1,

W2, . . . such that the inequality

Pr
(
S(w)

n > x
)
≤ Cε(1 + ε)n

n∑
k=1

Pr (WkXk > x)

holds for all n = 1, 2, . . . and all x ≥ 0.

These preliminary results enable us to apply the dominated convergence theorem to

prove that the right-hand side of (62) is asymptotic to
∑∞

n=1 nPr
(
X1e−δTU1 > x

)
Pr (NT = n).

In conclusion, we have

ψ(x, T ) ∼ λ

∫ T

0
Pr
(
X1e−δt > x

)
dt.
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