Characterization through Hazard Rate of heavy tailed distributions and some Convolution Closure Properties

Anastasios Bardoutsos, Dimitrios Konstantinides

Department of Statistics and Actuarial - Financial Mathematics, University of the Aegean

October 13, 2010
INTRODUCTION

We will assume for the whole paper that the distribution function F is supported on $[0, \infty)$ and that F has positive Lebesgue density function f.
We use the Matuszeweska indices and its properties to show asymptotics inequalities for the hazard rates. We discuss about the relation membership in dominatedly or subversively varying tail distribution and a hazard rate condition. Convolution closure is establish for the class of distributions with subexponential and subversiverly varying tails.
The class \mathcal{L}

A distribution function F belongs to the class \mathcal{L} if

$$\lim_{x \to \infty} \frac{\bar{F}(x - y)}{\bar{F}(x)} = 1$$

for all constants $y \in \mathbb{R}$.

This distribution function F is said to have a long tail.
The class \mathcal{D}

A distribution function F belongs to the class \mathcal{D} if

$$\limsup_{x \to \infty} \frac{F(ux)}{F(x)} < \infty$$

(1)

for any $0 < u < 1$ (or equivalently for $u = 1/2$). Such a distribution function F is said to have a dominatedly varying tail. An equivalent way to write (1) is

$$\bar{F}_*(u) := \liminf_{x \to \infty} \frac{\bar{F}(ux)}{\bar{F}(x)} > 0$$

(2)

for any $u > 1$.

Anastasios Bardoutsos, Dimitrios Konstantinides
The class \mathcal{E}

A distribution function F belongs to the class \mathcal{E}, if for some $u > 1$

$$\bar{F}^*(u) := \limsup_{x \to \infty} \frac{F(ux)}{F(x)} < 1.$$

Such a distribution function F is said to have subversively varying tail.
The class S

A distribution function F belongs to the class S if

$$\lim_{x \to \infty} \frac{F^*n(x)}{F(x)} = n$$

for any $n \geq 2$ (or equivalently for $n = 2$), where F^*n denotes the nth convolution of F. Such a distribution function F is said to have a subexponential tail.
The class \mathcal{A}

A distribution function F belongs to the class \mathcal{A} if

$$F \in S \text{ and } \bar{F}^*(u) < 1,$$

for some $u > 1$. In other words $\mathcal{A} = \mathcal{E} \cap S$.
It is well known the following inclusions

\[D \cap A \subset D \cap L \subset S \subset L. \]

\[D \cap A \subset D \cap E \]
Definition of Matuszewska indices

Upper Matuszewska index

Let g be positive. Then

The upper Matuszewska index $\alpha(g)$ is the infimum of those α for which there exists a constant $C = C(\alpha) > 0$ such that for each $\Lambda > 1$

$$\frac{g(\lambda x)}{g(x)} \leq C(1 + o(1))\lambda^\alpha,$$

as $x \to \infty$ and uniformly in $\lambda \in [1, \Lambda]$.
Lower Matuszewska index

Let g be positive. Then

The lower Matuszewska index $\beta(g)$ is the supremum of those β for which there exists a constant $D = D(\beta) > 0$ such that for each $\Lambda > 1$

$$\frac{g(\lambda x)}{g(x)} \geq D(1 + o(1))\lambda^\beta,$$

as $x \to \infty$, and uniformly in $\lambda \in [1, \Lambda]$.
Let consider the following notation. The positive function g has

1. bounded increase, $(g \in BI)$, if $\alpha(g) < \infty$
2. bounded decrease, $(g \in BD)$, if $\beta(g) > -\infty$
3. positive increase, $(g \in PI)$, if $\beta(g) > 0$
4. positive decrease, $(g \in PD)$, if $\alpha(g) < 0$

An equation that holds between the Matuszewska indices is

$$\beta(g) = -\alpha \left(\frac{1}{g} \right), \quad \text{for } g \text{ positive} \quad (3)$$

For more details of the Matuszewska indices, see Chapter 2.1 of Bingham et al. (1987).
Potter Inequalities

Let $g(.)$ be positive.

If $g \in BI$ then for every $\alpha > \alpha(g)$ there exist positive constants C, x_0 such that

$$\frac{g(y)}{g(x)} \leq C \left(\frac{y}{x} \right)^{\alpha}, \quad (y \geq x \geq x_0) \quad (4)$$

If $g \in BD$ then for every $\beta < \beta(g)$ there exist positive constants C', x_0 such that

$$\frac{g(y)}{g(x)} \geq C' \left(\frac{y}{x} \right)^{\beta}, \quad (y \geq x \geq x_0) \quad (5)$$
Matuszewska indices for the distributions tails

The upper Matuszewska index γ_F for a distribution function F, was introduced as follows.

$$\gamma_F := \inf \left\{ -\frac{\log F_*(u)}{\log u} : u > 1 \right\} = - \lim_{u \to \infty} \frac{\log F_*(u)}{\log u}. \quad (6)$$

The lower Matuszewska index δ_F for a distribution function F, was introduced as follows.

$$\delta_F := \sup \left\{ -\frac{\log F_*(u)}{\log u} : u > 1 \right\} = - \lim_{u \to \infty} \frac{\log F_*(u)}{\log u}. \quad (7)$$
Inequalities for the distributions functions

If the Upper Matuszeska index $\gamma_F < \infty$ then there exist constants C, x_0 such that

$$\frac{\overline{F}(x)}{\overline{F}(y)} \leq C \left(\frac{x}{y}\right)^{-\gamma}$$

(8)

for every $x \geq y \geq x_0$ and $\gamma_F < \gamma < \infty$.

If the Lower Matuszeska index $\delta_F > 0$ is finite then there exist constants C', x_0 such that

$$\frac{\overline{F}(x)}{\overline{F}(y)} \geq C' \left(\frac{x}{y}\right)^{-\delta}$$

(9)

for every $x \geq y \geq x_0$ and $0 < \delta < \delta_F$.

Anastasios Bardoutsos, Dimitrios Konstantinides
Matuszewska indices for the density functions

We introduced the upper Matuszewska index γ_f for the density function, as follows

$$\gamma_f := \inf \left\{ -\frac{\log f_*(u)}{\log u} : u > 1 \right\} = -\lim_{u \to \infty} \frac{\log f_*(u)}{\log u}. \quad (10)$$

where $f_*(u) = \liminf_{x \to \infty} \frac{f(ux)}{f(x)}$.

We introduced the lower Matuszewska index δ_f for the density function, as follows

$$\delta_f := \sup \left\{ -\frac{\log f_*(u)}{\log u} : u > 1 \right\} = -\lim_{u \to \infty} \frac{\log f_*(u)}{\log u}. \quad (11)$$

where $f_*(u) = \limsup_{x \to \infty} \frac{f(ux)}{f(x)}$.

Anastasios Bardoutsos, Dimitrios Konstantinides
Definition

We will say that the density function has

1. **bounded decrease**, \((f \in BD)\), if \(\gamma_f = \alpha(f^{-1}) < \infty\)

2. **positive decrease**, \((f \in PD)\), if \(\delta_f = \beta(f^{-1}) > 0\)
In analogy to inequalities (8) and (9) we introduce inequalities for density function

Corollary

If \(f \in BD \) then there exist constants \(C, x_0 \) such that

\[
\frac{f(y)}{f(x)} \geq C' \left(\frac{y}{x} \right)^{-\gamma}
\]

for every \(y \geq x \geq x_0 \).

If \(f \in PD \) then there exist constants \(C', x_0 \) such that

\[
\frac{f(y)}{f(x)} \leq C \left(\frac{y}{x} \right)^{-\delta}
\]

for every \(y \geq x \geq x_0 \).
Subversively Varying Tail

The Subversively Class is a large class that extends out of the class of Heavy Tail. We can see the following Example

Example

The Exponential distribution function is \(\bar{F}(x) = \exp\{-\lambda x\} \). As we can see

\[
\lim_{x \to \infty} \frac{\bar{F}(ux)}{\bar{F}(x)} = 0 < 1
\]

for all \(u > 1 \).
Lemma (Konstantinides et.al 2002)

Let F be a d.f. with a density function f which is eventually non-increasing. Then the following statements are equivalent:

1. $\bar{F}^*(u) < 1$ holds for some $u > 1$;
2. $\bar{F}^*(u) < 1$ holds for any $u > 1$;
3. the hazard rate function of F, $h(x) = \frac{f(x)}{\bar{F}(x)}$ satisfies

$$\liminf_{x \to \infty} xh(x) > 0.$$
Eventually non increasing?

If a function g is eventually non increasing then

$$\forall y \geq x \geq x_0 \Rightarrow g(y) \leq g(x)$$ \hspace{1cm} (14)
Eventually non increasing?

If a function g is eventually non increasing then

$$\forall y \geq x \geq x_0 \Rightarrow g(y) \leq g(x) \quad (14)$$

How easy we check that condition (14) holds?
Eventually non increasing?

If a function g is eventually non increasing then

$$\forall y \geq x \geq x_0 \Rightarrow g(y) \leq g(x) \quad (14)$$

- How easy we check that condition (14) holds?
- Does the condition (14) hold for every function g?
Eventually non increasing?

If a function g is eventually non increasing then

$$\forall y \geq x \geq x_0 \Rightarrow g(y) \leq g(x) \quad (14)$$

- How easy we check that condition (14) holds?
- Does the condition (14) hold for every function g?

We can obtain that condition (14) is the Potter inequality (4) for $C \leq 1$ and $\alpha(g) < 0$. Obviously
Eventually non increasing?

If a function g is eventually non increasing then

$$\forall y \geq x \geq x_0 \Rightarrow g(y) \leq g(x) \tag{14}$$

- How easy we check that condition (14) holds?
- Does the condition (14) hold for every function g?

We can obtain that condition (14) is the Potter inequality (4) for $C \leq 1$ and $\alpha(g) < 0$. Obviously

$$\frac{g(y)}{g(x)} \leq C \left(\frac{y}{x}\right)^{\alpha} \leq C, \quad (x \geq y \geq x_0). \tag{15}$$

for all $\alpha(g) < \alpha < 0$. But to obtain, if the Potter inequality holds we only need to calculate the Upper Matuszewska index.
The main idea is to replace the condition of eventually non-increasing (or decreasing) with the Potter Inequalities. When we have density functions we can obtain an analogous inequality of the previous one, if the $\delta_f > 0$.
Let F be an absolute continuous distribution function supported on $[0, \infty)$ with a density function $f(x)$ with $\delta_f > 0 \ (f \in PD)$. Then

$$F \in \mathcal{E} \text{ if and only if } \liminf_{x \to \infty} x h(x) > 0.$$

(16)
A sufficient condition for \(F \in \mathcal{E} \) is given from the following theorem:

Theorem

\[
\text{If } \liminf_{x \to \infty} x h(x) > 0 \text{ then } F \in \mathcal{E}
\]

A similar theorem is found in Klüppelberg C. (1988) for the class \(\mathcal{D} \cap \mathcal{L} \).
Lemma

If \(f \in PD, \delta_f > 1 \) for any \(\delta \in (1, \delta_f) \) then:

\[
xh(x) = x \frac{f(x)}{F(x)} \geq \frac{(\delta - 1)}{C} > 0
\]

for all \(x \geq x_0 \) and \(C > 0 \).

From Lemma and previous theorem we obtain
Lemma

If $f \in PD$, $\delta_f > 1$ for any $\delta \in (1, \delta_f)$ then:

$$xh(x) = x \frac{f(x)}{F(x)} \geq \frac{\delta - 1}{C} > 0$$

for all $x \geq x_0$ and $C > 0$.

From Lemma and previous theorem we obtain

Corollary

If $f \in PD$ with $\delta_f > 1$ then $F \in \mathcal{E}$.
Theorem

If $F_1, F_2 \in \mathcal{E}$ and the following statements hold

1. $f_1 \in PD$
2. $x^{-\delta^*} = O\left(\frac{1}{F_1(x)}\right)$

where $\delta^* = \min(\delta_{F_1}, \delta_{F_2})$, then $F_1 \ast F_2 \in \mathcal{E}$.
Subexponential Class

A sufficient condition for $F \in \mathcal{D} \cap \mathcal{L}$ is given by the following theorem.

Theorem (Klüppelberg C. 1988)

If $\limsup_{x \to \infty} x h(x) < \infty$ then $F \in \mathcal{D} \cap \mathcal{L}$

Corollary (Klüppelberg C. 1988)

Let F have an eventually decreasing density f. Then the following statements are equivalent:

1. $F \in \mathcal{D}$
2. $F \in \mathcal{D} \cap \mathcal{L}$
3. $\limsup_{x \to \infty} x h(x) < \infty$
Theorem

Let F be an absolute continuous distribution function supported on $[0, \infty)$ with a density function $f(x)$ with $\delta_f > 0$ ($f \in PD$). Then

1. $F \in \mathcal{D}$
2. $F \in \mathcal{D} \cap \mathcal{L}$
3. $\limsup_{x \to \infty} xh(x) < \infty$
Lemma

If \(f \in BD \) then there is positive \(x_0 \), such that for all \(x \geq x_0 \) and all \(\lambda > 1 \):

\[
xh(x) = x \frac{f(x)}{F(x)} \leq \frac{-\gamma + 1}{C'(\lambda^{-\gamma+1} - 1)}
\]

Furthermore if \(f \in BD \) then \(F \in D \cap L \).
The class \(A \cap D \)

Theorem

Let \(F \) be an absolute continuous distribution function with a density function \(f(x) \) with \(\delta_f > 0 \) then \(F \in A \cap D \) if and only if one of the following statements holds

1. \(0 < \liminf_{x \to \infty} xh(x) \leq \limsup_{x \to \infty} xh(x) < \infty \)
2. \(0 < \overline{F}_*(u) \leq \overline{F}^*(u) < 1 \)
Pitman (A Characterization Theorem for S)

Theorem (Pitman(1980))

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ eventually decreasing to 0. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{yh(x)\} f(y) \, dy = 1$$

(17)
Theorem

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.

Suppose F is absolutely continuous with density function f and hazard rate $h(x)$ with $\alpha(h) < 0$. Then $F \in S$ if and only if

$$\lim_{x \to \infty} \int_{0}^{x} \exp \{ kyh(x) \} f(y) \, dy = 1$$

(18)

for all $k > 0$.
BIBLIOGRAPHY

Thank you for your attention