Quadratic Optimization of Smooth Consumption and Optimal Annuity Design

Kenneth Bruhn
University of Copenhagen and SEB Pension Denmark

joint work with prof. Mogens Steffensen
University of Copenhagen

7th Conference in Actuarial Science & Finance on Samos

May 28 - June 3, 2012
A Puzzle and a Related Question

"Why are smooth-benefit and fixed annuities so much more popular than Unit-Link annuities with unsmoothed benefits?" (related to "the smooth consumption puzzle", Hansen and Singleton (1983)²).

"In an optimal consumption problem, what kind of preferences should we model in order to have a smooth rather than an unsmooth consumption pattern?"

Wealth dynamics in retirement:

\[dX_t = (r + \pi_t \lambda) X_t dt + \pi_t \sigma X_t dW_t - c_t dt, \quad X_0 = x_0, \]

Optimization criterion, given \(x_0 \):

\[\sup_{c, \pi} \mathbb{E}_{x_0} \left(\int_0^T e^{-\rho s} \left[\frac{1}{1-\gamma} c_s^{1-\gamma} ds + \frac{1}{1-\gamma} X_s^{1-\gamma} d\varepsilon_T(s) \right] \right), \]

Optimal controls:

\[c_t^* = \frac{X_t}{\text{func}(t)}, \quad \pi_t^* = \frac{\lambda}{\sigma^2 \gamma}. \]

Consumption varies perfectly with wealth.

Short term volatility:

\[dc_t = \ldots dt + \ldots dW_t, \]

A Unit-Link Annuity

Savings dynamics:

\[dX_t = (r + \pi_t \lambda) X_t dt + \pi_t \sigma X_t dW_t - b_t dt, \quad X_0 = x_0, \]

with benefits

\[b_t = \frac{X_t}{\theta(t)}, \]

\[\theta(t) = \int_t^T e^{-\int_t^s r^* d\tau} ds. \]

Matches optimal consumption from time-additive power utility (for specific parameter values).

Short term volatility:

\[db_t = \ldots dt + \ldots dW_t, \]
Quad. Opt. of Smooth Consumption

\[dX_t = (r + \pi_t \lambda)X_t dt + \pi_t \sigma X_t dW_t - c_t dt, \quad X_0 = x_0, \]

\[dc_t = a_t dt, \quad c_0 = c_0. \]

Optimization criterion, given \(x_0 \) and \(c_0 \):

\[\inf_a \mathbb{E}_{x_0, c_0} \left(\int_0^T \left[\frac{1}{2} (a_s - \bar{a} c_s)^2 ds + \frac{B}{2} (X_s - \xi c_s)^2 d\varepsilon_T(s) \right] \right). \]

For \(\pi = 0 \), Optimal control:

\[a_t^* = \bar{a} c_t + \frac{g(t)}{f(t)} (X_t - g(t)c_t), \]

with

\[f(t) = \int_t^T e^{-2r(s-t)} \left[g(s)^2 ds + \frac{1}{B} d\varepsilon_T(s) \right], \]

\[g(t) = \int_t^T e^{-(r-\bar{a})(s-t)} \left[ds + \xi d\varepsilon_T(s) \right]. \]
Figure: Graphs with initial consumption 10% to high. Parameters are $\pi = 0$, $x_0 = 10$, $r = 4\%$, $\bar{a} = 0\%$, $T = 10$, $B = 50$ and $\xi = 0$. The initial consumption is 1.36 (the preferred initial consumption is $x_0/g(0) = 1.24$).
A Formula Based Smoothed Investment-linked Annuity

Split Savings dynamics \((X)\) in Pension account \((P)\) and Equalization account \((U)\):

\[
dP_t = rP_t dt + \alpha U_t dt - b_t, \quad P_0 = X_0, \\
dU_t = (r + \pi_t \lambda)(P_t + U_t) dt + \pi_t \sigma (P_t + U_t) dW_t - \alpha U_t dt - \theta_t^{-1} U_t dt, \quad U_0 = 0.
\]

Benefits:

\[
b_t = \frac{P_t}{\theta(t)}.
\]

Benefit dynamics:

\[
 db_t = d \left(\frac{P_t}{\theta(t)}\right) = (r - r^*)(b_t dt + \frac{\alpha U_t}{\theta(t)} dt).
\]
Summing up...

- Merton’s problem yields unit-link annuity
- Our problem yields smoothed annuity

Expect a working paper before Christmas if things go well!
...and Taking off

Thank you for paying attention!

Questions and comments are always welcome!