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Motivations

The traditional study of default risk usually de�nes default as the
event that the �rm value goes below a too low level a. In particular,
a = 0 in classical ruin theory.

In real world, however, the �rm is also regarded as defaulted if its
value constantly stays below a moderately low level b for a certain
time period c , even though the hitting to level b does not
immediately lead to illiquidity of the �rm.

Economic justi�cations for such a consideration are the US
bankruptcy codes Chapter 7 (Liquidation) and
Chapter 11 (Reorganization).
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Default subject to two thresholds and one grace period

Suppose that the value process is modeled by X = fXt , t � 0g with
X0 = x0.

For a real number x , denote by Tx the �rst hitting time to level x .

Let a < b and c > 0 be three exogenously determined constants, with
a interpreted as the liquidity threshold, b as the reorganization
threshold and c as the grace period.

Let τb(c) be the �rst time when the process X has constantly stayed
below level b for c units of time.

See the graphs for Ta and τb(c).

The default probability is de�ned by

q(x0) = q(x0; a, b, c) = Px0 fTa ^ τb(c) < ∞g. (1.1)

It is sometimes more convenient to start with the non-default
probability p(x0) = 1� q(x0).
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Some immediate remarks

Letting a # �∞ and b = 0 in (1.1) yields

q(x0;�∞, 0, c) = Px0 fτ0(c) < ∞g ,

which is recognized as Parisian ruin probability.

Clearly, q(x0; a, b, c) is decreasing in c . Letting c # 0 in (1.1) yields

q(x0; a, b,+0) = Px0 fTb < ∞g ,

while letting c " ∞ yields

q(x0; a, b,∞) = Px0 fTa < ∞g .

Hence, the grace period c serves as a bridge connecting the two traditional
default probabilities:

Px0 fTa < ∞g � q(x0; a, b, c) � Px0 fTb < ∞g
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The �rm value process

Suppose that the �rm value is modeled by a time-homogeneous di¤usion
process X = fXt , t � 0g, with dynamics

dXt = µ(Xt )dt + σ(Xt )dWt . (2.1)

In (2.1):

X0 = x0 is the initial wealth,

fWt , t � 0g is a standard Brownian motion (Wiener process),
and µ(�) and σ(�) > 0 are two measurable functions satisfying usual
conditions of the existence and uniqueness theorem for the stochastic
di¤erential equation (2.1).

Denote by fFt , t � 0g the natural �ltration generated by fWt , t � 0g.
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The two-sided exit problem

De�ne

G (x) = exp
�
�
Z x 2µ(y)

σ2(y)
dy
�
, S(x) =

Z x
G (y)dy .

The function S(�) is referred to as the scale function of X . To avoid
triviality, we assume that S(∞) < ∞.

It is well known that, for u < x < v ,

Px fTu < Tv g =
R v
x G (y)dyR v
u G (y)dy

, Px fTu > Tv g =
R x
u G (y)dyR v
u G (y)dy

. (2.2)

Letting v = ∞ in second relation in (2.2) yields

Px fTu = ∞g =
R x
u G (y)dyR ∞
u G (y)dy

. (2.3)
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The main result

Introduce an auxiliary quantity

A(a, b, c) = lim
ε#0

Pb�ε fTb > Ta ^ cg
ε

. (2.4)

It will be proved later that A(a, b, c) exists, is �nite and equals the
boundary derivative of the solution of a PDE. Hence, its value can be
easily determined numerically.

Theorem 2.1 For a < b � x0 and c > 0, the default probability satis�es

q(x0) =
A(a, b, c)

A(a, b, c)
R ∞
b G (y)dy + G (b)

Z ∞

x0
G (y)dy . (2.5)
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Proof of Theorem 2.1

For x � b, by the strong Markov property,
p(x) = Px fTa = ∞, τb(c) = ∞g

= Px fTb = ∞g+ Px fTa = ∞, τb(c) = ∞,Tb < ∞g
= Px fTb = ∞g+ Ex [Px fTa = ∞, τb(c) = ∞,Tb < ∞j FTbg]
= Px fTb = ∞g+ Px fTb < ∞g p(b). (2.6)

It follows that

p0+(b) = lim
ε#0

p(b+ ε)� p(b)
ε

= q(b) lim
ε#0

Pb+ε fTb = ∞g
ε

= q(b)
G (b)R ∞

b G (y)dy
, (2.7)

where in the last step we used (2.3).
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Proof of Theorem 2.1 (Cont.)

Similarly, for x 2 (a, b) we have

p(x) = Px fTa = ∞, τb(c) = ∞g = Px fTb � Ta ^ cg p(b).

By Corollary 3.1 below, the limit A(a, b, c) in (2.4) exists and is �nite.

It follows that

p0�(b) = lim
ε#0

p(b)� p(b� ε)

ε

= p(b) lim
ε#0

Pb�ε fTb > Ta ^ cg
ε

= p(b)A(a, b, c). (2.8)
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Proof of Theorem 2.1 (Cont.)

By Theorem 4.1 below, the function p(�) is di¤erentiable at b. Thus, the
conjunction of (2.7) and (2.8) gives

p(b) =
G (b)

A(a, b, c)
R ∞
b G (y)dy + G (b)

. (2.9)

Substituting (2.9) into (2.6) and using (2.3), we obtain

p(x) =

R x
b G (y)dyR ∞
b G (y)dy

+

R ∞
x G (y)dyR ∞
b G (y)dy

� G (b)

A(a, b, c)
R ∞
b G (y)dy + G (b)

.

Thus, relation (2.5) follows from q(x) = 1� p(x).
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A PDE

Consider the modi�ed two-sided exit probability function

φ(x , t; a, b) = Px fTb � Ta ^ tg , a < x < b, t � 0.

The following theorem establishes a PDE for this function:

Theorem 3.1 Suppose h(x , t) solves

ht (x , t) = µ(x)hx (x , t) +
1
2

σ2(x)hxx (x , t), a < x < b, t > 0,

with the boundary conditions h(b, t) = 1 and h(a, t) = 0 for t � 0 while
h(x , 0) = 0 for a < x < b. Then

h(x , t) = φ(x , t; a, b), a � x � b, t � 0.
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Proof of Theorem 3.1

Applying Itö�s formula and noticing that hs (Xs , t � s) = �ht (Xs , t � s),
dh(Xs , t � s)

= �ht (Xs , t � s)ds + hx (Xs , t � s)dXs +
1
2
hxx (Xs , t � s)σ2(Xs )ds

= hx (Xs , t � s)σ(Xs )dWs .

For a stopping time τ, we have

h(Xτ^t , t � τ ^ t) = h(x , t) +
Z τ^t

0
hx (Xs , t � s)σ(Xs )dWs .

This implies that h(x , t) = Ex [h(Xτ^t , t � τ ^ t)].

Let τ = Ta ^ Tb . By the boundary conditions, we have
h(x , t) = Ex

�
h(Xτ,, t � τ)1fτ�tg

�
+ Ex

�
h(Xt ,, 0)1fτ>tg

�
= Ex

�
h(a, t � Ta)1fTa=τ�tg

�
+ Ex

�
h(b, t � Tb)1fTb=τ�tg

�
+ 0

= 0+ Px fTb � Ta ^ tg+ 0.
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Existence and �niteness of D(a,b,c)

By the well-known regularity theory of PDE (see, e.g. Theorem 4.22 of
Lieberman (1996)), we immediately have the following:

Corollary 3.1 It holds for every �xed t > 0 that φx (x , t; a, b)jx=b is �nite
and continuous with respect to t. In particular,

A(a, b, c) = lim
ε#0

Pb�ε fTb > Ta ^ cg
ε

= lim
ε#0

1� φ(b� ε, c ; a, b)
ε

= φx (x , c ; a, b)jx=b

exists and is �nite.
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Laplace transforms of the two-sided exit times

Suppose that g1(�; r) and g2(�; r) are two independent positive solutions of

1
2

σ2(x)g 00(x) + µ(x)g 0(x) = rg(x), r � 0,

with g1(�; r) decreasing and g2(�; r) increasing. De�ne

f (y , z ; r) = g1(y ; r)g2(z ; r)� g1(z ; r)g2(y ; r).

The Laplace transforms of the two-sided exit times for the di¤usion
process X were �rst solved by Darling and Siegert (1953):

Lemma 4.1 For u � x � v and r � 0, we have

Ex
h
e�rTu ;Tu < Tv

i
=
f (x , v ; r)
f (u, v ; r)

, Ex
h
e�rTv ;Tv < Tu

i
=
f (u, x ; r)
f (u, v ; r)

.
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On the minimum of two exit times

Lemma 4.2 For all x ,

lim
ε#0

Ex [Tx+ε ^ Tx�ε]

ε2
= C (x),

where C (x) > 0 is a �nite constant with an explicit expression.

Proof. By Lemma 4.1,

Ex [Tx�ε;Tx�ε < Tx+ε] = �
∂

∂r
Ex
h
e�rTx�ε ;Tx�ε < Tx+ε

i����
r=0

= � ∂

∂r
f (x , x + ε; r)

f (x � ε, x + ε; r)

����
r=0

= . . . .

A similar relation for Ex [Tx+ε;Tx+ε < Tx�ε] holds. Therefore,

Ex [Tx+ε ^ Tx�ε] = Ex [Tx+ε;Tx+ε < Tx�ε] + Ex [Tx�ε;Tx�ε < Tx+ε]

= Taylor�s expansion = . . . .
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A lemma

Lemma 4.3 Pb fτb(c) < Tb�εg = O(ε2) as ε # 0.
Proof. For X starting with b, denote the
consecutive down-crossing and up-crossing times of levels b and b+ ε by

0 = γ�0 < γ+0 < � � � < γ�i�1 < γ+i�1 < γ+i < � � � .
Then, by the strong Markov property of X and Lemma 4.2,

Pb fτb(c) < Tb�εg =
∞

∑
i=0

Pb
�

γ�i < τb(c) < γ+i ^ Tb�ε

	
=

∞

∑
i=0

Eb
h
Eb
h
1fγ�i <τb (c )<γ+i ^Tb�εg

���Fγ�i

ii
= Pb fτb(c) < Tb+ε ^ Tb�εg

∞

∑
i=0

Pb
�

γ�i < Tb�ε

	
� 1
c

Eb [Tb+ε ^ Tb�ε]
∞

∑
i=0

�
Pb fTb+ε < Tb�εg

�i
= O

�
ε2
�
.
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Di¤erentiability of p(x) is at b

Theorem 4.1 The function p(�) is di¤erentiable at b.

Proof. By (2.7), it su¢ ces to show that

lim
ε#0

p(b)� p(b� ε)

ε
= q(b)

G (b)R ∞
b G (y)dy

. (4.1)
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Proof of Theorem 4.1 (Cont.)

For small ε > 0, we split p(b) into two parts as

Pb fτb(c) = ∞,Tb�ε = ∞g+ Pb fTa = ∞, τb(c) = ∞,Tb�ε < ∞g .

By Lemma 4.3, the �rst term equals

Pb fTb�ε = ∞g�Pb fτb(c) < ∞,Tb�ε = ∞g = Pb fTb�ε = ∞g+O(ε2).

With some e¤orts, we can prove that the second term satis�es

Pb fTb�ε < ∞g p(b� ε) + o(ε)

It follows that

p(b) = Pb fTb�ε = ∞g+ Pb fTb�ε < ∞g p(b� ε) + o(ε),

which easily implies (4.1).
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Implicit �nite di¤erence method

Recall formula (2.5) for the default probability q(x0):

q(x0) =
A(a, b, c)

A(a, b, c)
R ∞
b G (y)dy + G (b)

Z ∞

x0
G (y)dy . (2.5)

The only implicit part is the quantity A(a, b, c).

Theorem 3.1 and Corollary 3.1 enable us to compute A(a, b, c)
numerically via a PDE. We use the second-order implicit �nite di¤erence
method to solve A(a, b, c) for both a Brownian motion and a geometric
Brownian motion.
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Brownian motion case

Assume dXt = µdt + σdWt , with x0 � b, µ, σ > 0. Relation (2.5)
reduces to (with ρ = 2µ/σ2)

q(x0) =
A(a, b, c)

A(a, b, c) + ρ
e�ρ(x0�b).

Set parameters to µ = 0.1, σ = 0.25, a = 0.1, b = 0.2 and c = 1. Then

mesh A(0.1, 0.2, 1) q(x0) elapsed time (s)

0.005 8.5534038 1.3801420� e�3.2x0 0.505305
0.001 8.4987776 1.3777311� e�3.2x0 4.119148
0.0005 8.4919795 1.3774294� e�3.2x0 44.813284
0.00025 8.4885830 1.3772786� e�3.2x0 342.789096

In the meantime,

Px0 fTa < ∞g = 1.3771278� e�3.2x0 ,

Px0 fTb < ∞g = 1.8964809� e�3.2x0 ,

Px0 fτb(c) < ∞g = 0.6932042� e�3.2x0 .
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Geometric Brownian motion case

Assume dXt = µXtdt + σXtdWt , with x0 � b and ρ = 2µ/σ2 > 1.
Relation (2.5) reduces to

q(x0) =
A(a, b, c)

A(a, b, c) + ρ� 1

�
b
x0

�ρ�1
.

Set parameters to µ = 0.1, σ = 0.25, a = 0.1, b = 0.2 and c = 1. Then

mesh A(0.1, 0.2, 1) q(x0) elapsed time (s)

0.005 11.495846 0.024334255� x�2.20 0.460361
0.001 11.145638 0.024212051� x�2.20 4.881175
0.0005 11.101517 0.024196199� x�2.20 37.679470
0.00025 11.079429 0.024188223� x�2.20 287.741042

In the meantime,

Px0 fTa < ∞g = 0.0063095734� x�2.20 ,

Px0 fTb < ∞g = 0.028991187� x�2.20 ,

Px0 fτb(c) < ∞g = 0.014533261� x�2.20 .
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Potential future works

Consider a more general �rm value process of strong Markov property;

Incorporate (heavy-tailed) jumps into the modeling;

Consider the more practical �nite-time case.

� � �

Thank You Very Much!!!
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