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@ The traditional study of default risk usually defines default as the
event that the firm value goes below a too low level a. In particular,
a = 0 in classical ruin theory.

@ In real world, however, the firm is also regarded as defaulted if its
value constantly stays below a moderately low level b for a certain
time period ¢, even though the hitting to level b does not
immediately lead to illiquidity of the firm.

@ Economic justifications for such a consideration are the US
bankruptcy codes Chapter 7 (Liquidation) and
Chapter 11 (Reorganization).
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http://www.uscourts.gov/FederalCourts/Bankruptcy/BankruptcyBasics/Chapter7.aspx
http://www.uscourts.gov/FederalCourts/Bankruptcy/BankruptcyBasics/Chapter11.aspx

Default subject to two thresholds and one grace period

@ Suppose that the value process is modeled by X = {X;, t > 0} with
XO == X0-

@ For a real number x, denote by T the first hitting time to level x.

@ Let a < b and ¢ > 0 be three exogenously determined constants, with

a interpreted as the liquidity threshold, b as the reorganization
threshold and ¢ as the grace period.

o Let 75(c) be the first time when the process X has constantly stayed
below level b for ¢ units of time.
@ See the graphs for T, and 7p(c).

@ The default probability is defined by
q(x0) = q(x0;a b, c) =P {T; N Tp(c) < oo} (1.1)

It is sometimes more convenient to start with the non-default
probability p(xo) =1 — q(xo).
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http://www.stat.uiowa.edu/~qtang/temp/1-Ta.pdf
http://www.stat.uiowa.edu/~qtang/temp/2-Taub.pdf

Some immediate remarks

Letting a | —oo and b =0 in (1.1) yields
q(x0; —00,0,c) =P {1o(c) < oo},

which is recognized as Parisian ruin probability.

Clearly, g(xo; a, b, ¢) is decreasing in c. Letting ¢ | 0 in (1.1) yields
q(Xo; a, b, —|—0) = pPX {Tb < oo} ,
while letting ¢ T oo yields

q(x0;a,b,00) =P {T, < oo}.

Hence, the grace period c serves as a bridge connecting the two traditional
default probabilities:

PO {T, < oo} < q(xp;a b c) <PO{T, < o0}
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The firm value process

Suppose that the firm value is modeled by a time-homogeneous diffusion
process X = {X;, t > 0}, with dynamics
In (2.1):

@ Xy = xg is the initial wealth,

o {W;, t >0} is a standard Brownian motion (Wiener process),

@ and y(-) and o(-) > 0 are two measurable functions satisfying usual
conditions of the existence and uniqueness theorem for the stochastic
differential equation (2.1).

Denote by {F;,t > 0} the natural filtration generated by { W;, t > 0}.
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The two-sided exit problem

Define

G(x) :exp{—/X 2y(y)dy}, S(x) :/X G(y)dy.

o%(y)

The function S(+) is referred to as the scale function of X. To avoid
triviality, we assume that S(co) < co.

It is well known that, for v < x < v,

. _ L ehdy _ J, 6b)dy
P {Tu < Tv} = m, P {Tu > Tv} = fu\, G(y)dy (22)
Letting v = oo in second relation in (2.2) yields
(T — et - Ju Oy
P {T, =0} = iy (2.3)
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The main result

Introduce an auxiliary quantity

PP=¢{T, > T.
A(a, b,c) =lim {7 > a/\c}.
el0 €

(2.4)

It will be proved later that A(a, b, ¢) exists, is finite and equals the
boundary derivative of the solution of a PDE. Hence, its value can be
easily determined numerically.

Theorem 2.1 For a < b < xg and ¢ > 0, the default probability satisfies

A(abc)
Aabcfb y)dy + G

Q(Xo) =

o /'°° Gly)dy.  (25)
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Proof of Theorem 2.1

For x > b, by the strong Markov property,
p(x) = P*{T, = 00, Tp(c) = oo}
=P {Tp =00} + P*{T, =00, Tp(c) =00, Tp < o0}
:PX{Tb = OO}+EX [PX{Ta = OO,Tb(C) =o0, Tp < OO‘fTb}]
=P~ {Tb = OO} + P {Tb < OO} p(b) (26)

It follows that

o, (b) = im p(b+ 81 — p(b)
o ) Pb+€{T = oo}
= q(b)lim eb
G(b)
f, G(y)dy'

where in the last step we used (2.3).

= q(b)
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Proof of Theorem 2.1 (Cont.)

Similarly, for x € (a, b) we have

p(x) =P {T,=00,Tp(c) =00} =P {T, < T, Ac}p(b).

By Corollary 3.1 below, the limit A(a, b, ¢) in (2.4) exists and is finite.

It follows that

) . p(b) —p(b—e¢)
p_(b) = lim -
_ . PP E{T, > T,Ac}
= p(b)lim -
= p(b)A(a,b,c). (2.8)
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Proof of Theorem 2.1 (Cont.)

By Theorem 4.1 below, the function p(-) is differentiable at b. Thus, the
conjunction of (2.7) and (2.8) gives

) 6(b)
A(a, b, c) f[:o G(y)dy + G(b)

p(b) (2.9)

Substituting (2.9) into (2.6) and using (2.3), we obtain

_ L 6Wdy  [TG6ydy G(b)
[5Gy [ G(y)dy " Aa,b,c) [;° Gy)dy + G(b)’

p(x) +

Thus, relation (2.5) follows from g(x) =1 — p(x).
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A PDE

Consider the modified two-sided exit probability function
p(x,t;a,b) =P {T, < T,At}, a<x<bt>0.

The following theorem establishes a PDE for this function:
Theorem 3.1 Suppose h(x, t) solves
1
he(x, t) = u(x)he(x, t) + 50'2(X)hXX(X, t), a<x<bt>0,

with the boundary conditions h(b, t) = 1 and h(a, t) = 0 for t > 0 while
h(x,0) =0 for a < x < b. Then

h(x,t) = ¢(x, t;a, b), a<x<bht>0.
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Proof of Theorem 3.1

Applying 1té’s formula and noticing that hs(Xs, t —s) = —h(Xs, t — s),
dh(Xs, t —s)
= —h(Xs, £ s)ds - he(Xs, £ 5)dXs + She(Xs, £ 5)0?(Xi)ds
= he(Xs, t — s)o(Xs)d W.

For a stopping time T, we have

h(Xene, t—TAE) = h(x, t) +/ (Xer t — $)0(Xs)dWs.
This implies that h(x, t) = EX [h(Xope, t — TAL)].
Let T = T, A Tp. By the boundary conditions, we have
h(x, t) = EX [h( X, t = T)1r<py] + EX [A(Xe, 0)1{7opy]

=E*[h(a, t — To)lq7,—r<ey] + EX [A(b, t — Tp)1li7,—r<sy] +0
=0+P{T, < T,At}+0.
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Existence and finiteness of D(a,b,c)

By the well-known regularity theory of PDE (see, e.g. Theorem 4.22 of
Lieberman (1996)), we immediately have the following:

Corollary 3.1 It holds for every fixed t > 0 that ¢, (x, t;a, b)|, _, is finite
and continuous with respect to t. In particular,

P {T, > T,Ac}

A(a, b =1
(2.5, ¢) = lim e
_lim 1—¢(b—¢c;a,b)
el0 €

= (PX(X’ ¢ a, b)|X:b

exists and is finite.
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Laplace transforms of the two-sided exit times

Suppose that gi1(; r) and g(+; r) are two independent positive solutions of
1
507 (8" (x) + p(x)g'(x) = rg(x),  r=0,

with gi1(; r) decreasing and g»(+; r) increasing. Define
fly.zir) = a1(yirg(zir) —gi(zir)g(yir).

The Laplace transforms of the two-sided exit times for the diffusion

process X were first solved by Darling and Siegert (1953):

Lemma 4.1 For u < x < v and r > 0, we have

E* [e"“; Ty < TV} = E~ [e—”v; T, < Tu] = M
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On the minimum of two exit times

Lemma 4.2 For all x,

li EX [Tere A Txfs]
m 5
el0 3

= C(x),
where C(x) > 0 is a finite constant with an explicit expression.

Proof. By Lemma 4.1,

0 _
BY [Tumei Tame < Toe] = — 5 B [e Moo T, < Tm]

B 3 f(x,x+¢r)
orf(x —e,x+¢r)

r=0

r=0
A similar relation for EX [Ti¢; Txte < Tx—¢| holds. Therefore,

EX [Tx+£ A Txfe] = EX [Tx+s; Tx+£ < Txfe] + EX [Txfe; X—€ < Tx+8]
= Taylor's expansion = .. ..
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A lemma

Lemma 4.3 P°{7,(c) < Tp_.} = O(¢?) as e | 0.
Proof. For X starting with b, denote the
consecutive down-crossing and up-crossing times of levels b and b + ¢ by

0=17 <7 < <71 <7< <
Then, by the strong Markov property of X and Lemma 4.2,

Pb {Tb(C) < Tb,g} = in {’)’7 < Tb(C) < ’)’I+ AN beg}

j 2

=P {T5(c) < Tore A Toe} Y PP {77 < Toe}
i=0

(o]

- .ZEb [Eb |:1{'YF<Tb(C)<')’;+/\Tb—g}

o]

B [Ty A Ty L (P {Tore < Toe})

:O(sz). )

| /\
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http://www.stat.uiowa.edu/~qtang/temp/3-Gamma.pdf

Differentiability of p(x) is at b

Theorem 4.1 The function p(-) is differentiable at b.

Proof. By (2.7), it suffices to show that

i PO) —p(b—¢) _
elo € I b G(y)dy

(4.1)
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Proof of Theorem 4.1 (Cont.)

For small ¢ > 0, we split p(b) into two parts as

P’ {14(c) =00, Tp_e = 00} + PP {T, = 00, 7p(c) = o0, Tp_ < 0} .

By Lemma 4.3, the first term equals
PP {T, ¢ =00} —P?{14(c) <00, Tp_o =0} = PP {T, . = 0o} + O(¢?).
With some efforts, we can prove that the second term satisfies

PP {T, . < oo} p(b—¢e)+o(e)

It follows that
p(b) =P°{Ty, =0} +P°{T, . < 0} p(b—¢)+o(e),

which easily implies (4.1).
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Implicit finite difference method

Recall formula (2.5) for the default probability g(xp):

q(x0) =

Ala.b.o) [Temar s

A(a b,c) [ G(y)dy + G(b)

0

The only implicit part is the quantity A(a, b, ¢).

Theorem 3.1 and Corollary 3.1 enable us to compute A(a, b, ¢)
numerically via a PDE. We use the second-order implicit finite difference

method to solve A(a, b, ¢) for both a Brownian motion and a geometric
Brownian motion.
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Brownian motion case

Assume dX; = udt + ocdW;, with xg > b, 4, > 0. Relation (2.5)
reduces to (with p = 2u/0?)
A(a, b, c) o—pla—b).
A(a, b, c)+p
Set parameters to y = 0.1, 0 = 0.25, a=0.1, b=0.2 and c = 1. Then

q(x0) =

’ mesh ‘ A(0.1,0.2,1) ‘ q(xo) ‘ elapsed time (s) ‘
0.005 8.5534038 | 1.3801420 x e 3-2%0 0.505305
0.001 8.4987776 | 1.3777311 x e~ 3:2% 4.119148
0.0005 | 8.4919795 | 1.3774294 x e—3:2%0 44.813284

0.00025 | 8.4885830 | 1.3772786 x e~3:2% | 342.789096

In the meantime,
P* {T, < co} = 1.3771278 x e >©,
P* {T, < co} = 1.8964809 x e 32X,
P® {1,(c) < oo} = 0.6932042 x e 2%
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Geometric Brownian motion case

Assume dX; = uXidt + o X, dW;, with xo > b and p = 2;4/(72 > 1.
Relation (2.5) reduces to

A(a, b, b\
q(x0) = ( ) — .
A(a,b,C)ﬁ’p*l X0
Set parameters to y = 0.1, 0 = 0.25, a= 0.1, b=0.2 and c = 1. Then

mesh | A(0.1,0.2,1) | q(xo) | elapsed time (s) |
0.005 11.495846 | 0.024334255 x x,*~ 0.460361
0.001 11.145638 | 0.024212051 x x> 4.881175
0.0005 | 11.101517 | 0.024196199 x x,%2 | 37.679470
0.00025 | 11.079429 | 0.024188223 x x, 22 | 287.741042

In the meantime,
P* {T, < co} = 0.0063095734 x x; 22,
P* {T, < oo} = 0.028991187 x x; >,
P* {1,(c) < oo} = 0.014533261 x x; 2.
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Potential future works

Consider a more general firm value process of strong Markov property;

Incorporate (heavy-tailed) jumps into the modeling;

Consider the more practical finite-time case.
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Thank You Very Much!!!
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