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Abstract

This talk presents a new model for a stock price in the form of a geometric Markov
renewal process (GMRP) which is one of many examples of discrete-time semi-Markov
random evolutions (DTSMRE). We study asymptotic properties of the DTSMREs,
namely, averaging, diffusion approximation and normal deviations by martingale weak
convergence method. We also consider controlled DTSMREs and find Hamilton-
Jacobi-Bellman equation for them. As applications we present European call option
pricing formula for GMRP and find optimal cost function for the controlled GMRP.

Discrete-time Semi-Markov Random Evolutions. Let IN be the set of non-
negative integer numbers, IR+ := [0,∞), and B+ be the Borel sets of IR+. Let (E, E)
be a measurable space with countably generated σ-algebra and (Ω,F , (Fn)n∈IN,P) be
a stochastic basis on which we consider a Markov renewal process (xn, τn, n ∈ IN) in
discrete time k ∈ IN, with state space (E × IR+, E ⊗ B+). Let q(x,B, k) := P(xn+1 ∈
B, τn+1 − τn = k | xn = x), for x ∈ E, B ∈ E , and k, n ∈ IN, the semi-Markov
kernel. The process (xn) is the embedded Markov chain of the semi-Markov chain,
with transition kernel P (x, dy) given by P (x,B) := q(x,B, IN). The semi-Markov
kernel q is written as q(x, dy, k) = P (x, dy)fxy(k), where fxy(k) := P(τn+1 − τn =
k | xn = x, xn+1 = y), the conditional distribution of the sojourn time in state x

given that the next visited state is y. Define also the counting process of jumps
νk = max{n : τn ≤ k}, and the discrete-time semi-Markov chain zk by zk = xνk ,
for k ∈ IN. Define now the backward recurrence time process γk := k − τνk , k ≥ 0,
and the filtration Fk := σ(zℓ, γℓ; ℓ ≤ k), k ≥ 0. The process (zk, γk), k ≥ 0, is a
Markov chain. Let us consider a separable Banach space IB of real-valued measur-
able functions defined on E × IN, endowed with the sup norm ‖·‖ and denote by B
its Borel σ-algebra. Let P ♯ be the transition operator kernel of the Markov chain
(zk, γk), k ≥ 0, and its stationary distribution π♯(dx × {k}). The probability mea-
sure π defined by π(B) := π♯(B × IN) is the stationary probability of the SMC (zk).
Let Π be the stationary projection operator on the null space of the (discrete) gen-
erating operator Q♯ := P ♯ − I, The potential operator of Q♯, denoted by R0 (see
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[3]). Let us given a family of linear bounded contraction operators D(x), x ∈ E, (i.e.
‖D(x)ϕ‖ ≤ ‖ϕ‖), defined on IB, where the maps D(x)ϕ : E → IB are E-measurable,
ϕ ∈ IB. Denote by I the identity operator on IB. Let ΠIB = N (Q♯) be the null
space, and (I − Π)IB = R(Q♯) be the range values space of operator Q♯. We will
suppose here that the Markov chain (zk, γk, k ∈ IN) is uniformly ergodic, that is,
sup‖ϕ‖≤1

∥

∥((P ♯)n −Π)ϕ
∥

∥ → 0, as n → ∞, for any ϕ ∈ IB. Notice that this condition
implies the exponential ergodicity of the Markov chain. In that case, the transition
operator is reducible-invertible on IB. Thus, we have IB = N (Q♯) ⊕ R(Q♯), the di-
rect sum of the two subspaces. The domain of an operator A on IB is denoted by
D(A) := {ϕ ∈ IB : Aϕ ∈ IB}.

A (forward) discrete-time semi-Markov random evolution (DTSMRE) Φk, k ∈ IN,
on IB, is defined by

Φkϕ = D(zk)D(zk−1) · · ·D(z2)D(z1)ϕ, k ≥ 1, and Φ0 = I.

for any ϕ ∈ IB0 := ∩x∈ED(D(x)). Thus we have Φk = D(zk)Φk−1.
Applications in Finance. As one of many applications of DTSMREs in finance

and insurance, we consider here the geometric Markov renewal process (GMRP) (see
[4]) Sn := S0

∏νn
i=1

(1 + ρ(xi)), which models a stock price with many possible future
values. Function ρ(x) is continuous and bounded on E. The GMRP is a generalization
of Cox-Ross-Rubinstein binomial model (see [2]) and Aase geometric compound Pois-
son model (see [1]). We consider this process in series scheme Sǫ

t :=
∏νt/ǫ

i=1
(1+ ǫρ(xi))

and obtain ergodic, diffusion and normal deviation of the stock prices in this case. We
present European call option pricing formulas for the diffusion and normal deviations
cases. We also consider controlled GMRP (CGMRP) Sn := S0

∏νn
i=1

(1 + ρ(xi, ui)),
where ui is a control process (e.g., Markov chain in some control space U). For
CGMRP we obtain the optimal cost function by deriving and solving Hamilton-
Jacobi-Bellman equation.
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