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Maximum drawdown, the maximum cumulative loss from peak to trough, is one of the most widely
used indicators of risk in the fund management industry, but one of the least developed in the context
of probabilistic risk metrics.

A levered investor is liable to get caught in a liquidity trap: unable to secure funding after an abrupt
market decline, he may be forced to sell valuable positions under unfavorable market conditions. This
experience was commonplace during the 2007-2009 financial crisis and it has refocused the attention
of both levered and unlevered investors on an important liquidity trap trigger, a drawdown, which is
the maximum decline in portfolio value over a fixed horizon.

In the event of a large drawdown, common risk diagnostics, such as volatility, Value-at-Risk, and
Expected Shortfall, at the end of the intended investment horizon are irrelevant. Indeed, within the
universe of hedge funds and commodity trading advisors (CTAs), one of the most widely quoted
measures of risk is maximum drawdown. However, a widely accepted mathematical methodology
for forming expectations about future potential drawdowns does not seem to exist. Drawdown in the
context of measures of risk as developed in Artzner et al. (1999) has failed to attract the same kind of
research devoted to other more conventional risk measures.

Our purpose is to formulate a mathematically sound and practically useful measure of drawdown risk.
To this end, we develop a probabilistic measure of risk capturing drawdown in the spirit of Artzner
et al. (1999). Our formalization of drawdown risk is achieved by modeling the uncertain payoff along
a finite path as a time-ordered random vector XTn = (Xt1 , . . . , Xtn), to which a certain real-valued
functional, the Conditional Expected Drawdown, is applied. Technically, the random variables Xti are
first transformed to the random variable µ(XTn), representing the maximum drawdown within a path
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of some fixed length n. At confidence level α ∈ [0, 1], the Conditional Expected Drawdown CEDα is
then defined to be the expected maximum drawdown given that some maximum drawdown threshold
DTα, the α-quantile of the maximum drawdown distribution, is breached:

CEDα(XTn) = E
(
µ(XTn)|µ(XTn) > DTα

)
.

In the context of risk measures, CED is not a monetary risk metric, in the sense that it fails to satisfy
the translation invariance and monotonicity axioms. It is, however, convex, which means that it
promotes diversification and can be used in an optimizer. It is also homogenous of degree one, so that
it supports risk attribution. Moreover, CED is a deviation measure in the sense of Rockafellar et al.
(2002, 2006).

Based on these properties, drawdown risk can be integrated in the investment process in a mathemati-
cally consistent way, in terms of risk attribution and diversification analysis with respect to drawdown
risk. Moreover, we show that, unlike volatility and expected shortfall, drawdown accounts for serial
correlation in asset returns, and this manifests itself in the drawdown risk concentrations. Because of
its convexity, CED can be optimized, and an efficient linear programming algorithm solving the CED
minimization problem is derived.

Because Conditional Expected Drawdown is defined as the tail mean of a distribution of maximum
drawdowns, it is analogous to Expected Shortfall, which is the tail mean of the return distribution.
Hence, much of the theory surrounding Expected Shortfall carries over when moving from returns to
maximum drawdowns. We will show, however, that one advantage of looking at maximum drawdown
rather than return distributions lies in the fact that drawdown is inherently path dependent, whereas
Expected Shortfall does not account for consecutive losses.

Having focused on theoretical foundations, we conclude by pointing out some challenges arising
when moving from theory to practice, particularly when it comes to estimating and forecasting draw-
down risk.
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