Exponential Family Techniques in the Lognormal Left Tail

Søren Asmussen¹
Aarhus University
http://home.imf.au.dk/asmus

8th Conference on Insurance and Finance on Samos

May 18, 2014

 $\it n$ assets in portfolio, long position

n assets in portfolio, long position value after period: $S = \sum_{i=1}^{n} X_i$, each X_i lognormal, $X_i = \exp\{\mu_i + \sigma_i V_i\}$, $V_i \sim N(0,1)$ (value before: build in μ_i)

```
n assets in portfolio, long position value after period: S = \sum_{i=1}^{n} X_i, each X_i lognormal, X_i = \exp\{\mu_i + \sigma_i V_i\}, V_i \sim N(0,1) (value before: build in \mu_i) small values of S: loss.
```

n assets in portfolio, long position

value after period:
$$S = \sum_{i=1}^{i} X_i$$
, each X_i lognormal, $X_i = \exp\{\mu_i + \sigma_i V_i\}$, $V_i \sim N(0,1)$ (value before: build in μ_i)

small values of S: loss.

Goal: assess $\mathbb{P}(S \leq z)$ for small z.

n assets in portfolio, long position

(value before: build in μ_i)

value after period:
$$S = \sum_{i=1}^{n} X_i$$
, each X_i lognormal, $X_i = \exp\{\mu_i + \sigma_i V_i\}$, $V_i \sim N(0,1)$

small values of S: loss.

Goal: assess $\mathbb{P}(S \leq z)$ for small z.

Only ref's:

Rojas-Nandayapa PhD thesis 2008 Gulisashvili & Tankov 2013

 $\mathbb{P}(S \geq z)$ more standard

 $\mathbb{P}(S \geq z)$ more standard

Lognormal right tail subexponential (heavy-tailed)

 $\mathbb{P}(S \geq z)$ more standard

Lognormal right tail subexponential (heavy-tailed)

$$\mathbb{P}(S \ge z) \sim n\mathbb{P}(X > x)$$
 in i.i.d. case

 $\mathbb{P}(S \geq z)$ more standard

Lognormal right tail subexponential (heavy-tailed)

$$\mathbb{P}(S \ge z) \sim n\mathbb{P}(X > x)$$
 in i.i.d. case

SA-Rojas-Nandayapa 2008: Gaussian copula, different μ_i, σ_i^2

Saddlepoint approximation

Saddlepoint approximation X_1, X_2, \dots i.i.d. $\sim G$

Saddlepoint approximation

$$X_1, X_2, \dots$$
 i.i.d. $\sim G$

Change of measure in exponential family: $G_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathbb{F}_{\alpha}\theta X}G(\mathrm{d}x)$

Saddlepoint approximation

$$X_1, X_2, \dots$$
 i.i.d. $\sim G$

Change of measure in exponential family: $G_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathbb{F}_{e}\theta X}G(\mathrm{d}x)$

In $\mathbb{P}(S_n \ge z)$, write z = nxSolve $\mathbb{E}_{\theta}X = x$ for θ

Saddlepoint approximation

$$X_1, X_2, \dots$$
 i.i.d. $\sim G$

Change of measure in exponential family:
$$G_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathbb{E}e^{\theta X}}G(\mathrm{d}x)$$

In
$$\mathbb{P}(S_n \geq z)$$
, write $z = nx$

Solve
$$\mathbb{E}_{\theta}X = x$$
 for θ

$$\mathbb{P}(S_n \ge nx) = \frac{1}{\left[\mathbb{E}e^{\theta X}\right]^n} \mathbb{E}_{\theta} \left[\exp\{\theta S_n\}; \ S_n \ge nx \right]. \tag{*}$$

Saddlepoint approximation

$$X_1, X_2, \dots$$
 i.i.d. $\sim G$

Change of measure in exponential family: $G_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathbb{E}e^{\theta X}}G(\mathrm{d}x)$

In $\mathbb{P}(S_n \geq z)$, write z = nx

Solve $\mathbb{E}_{\theta}X = x$ for θ

$$\mathbb{P}(S_n \ge nx) = \frac{1}{\left[\mathbb{E}e^{\theta X}\right]^n} \mathbb{E}_{\theta}\left[\exp\{\theta S_n\}; S_n \ge nx\right]. \tag{*}$$

 S_n is centered in \mathbb{P}_{θ} -distribution: $\mathbb{E}_{\theta}S_n=z$

Saddlepoint approximation

$$X_1, X_2, \dots$$
 i.i.d. $\sim G$

Change of measure in exponential family: $G_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathbb{E}_{e}\theta X}G(\mathrm{d}x)$

In $\mathbb{P}(S_n \geq z)$, write z = nx

Solve $\mathbb{E}_{\theta}X = x$ for θ

$$\mathbb{P}(S_n \geq nx) = \frac{1}{\left[\mathbb{E}e^{\theta X}\right]^n} \mathbb{E}_{\theta}\left[\exp\{\theta S_n\}; S_n \geq nx\right]. \tag{*}$$

 S_n is centered in \mathbb{P}_{θ} -distribution: $\mathbb{E}_{\theta}S_n=z$

Apply central limit expansions to reduce (*)

Saddlepoint approximation

$$X_1, X_2, \dots$$
 i.i.d. $\sim G$

Change of measure in exponential family:
$$G_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathbb{E}\mathrm{e}^{\theta X}}G(\mathrm{d}x)$$

In
$$\mathbb{P}(S_n \geq z)$$
, write $z = nx$

Solve
$$\mathbb{E}_{\theta}X = x$$
 for θ

$$\mathbb{P}(S_n \ge nx) = \frac{1}{\left[\mathbb{E}e^{\theta X}\right]^n} \mathbb{E}_{\theta}\left[\exp\{\theta S_n\}; S_n \ge nx\right]. \tag{*}$$

 S_n is centered in \mathbb{P}_{θ} -distribution: $\mathbb{E}_{\theta}S_n=z$

Apply central limit expansions to reduce (*)

Do the same in lognormal left tail

Exponential change of measure requires

$$\mathcal{L}(\theta) = \mathbb{E} \exp\{-\theta X\} = \mathbb{E} \exp\{-\theta e^{\sigma V}\}$$

Exponential change of measure requires

$$\mathcal{L}(\theta) = \mathbb{E} \exp\{-\theta X\} = \mathbb{E} \exp\{-\theta \mathrm{e}^{\sigma V}\}$$
, i.e.
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-t^2/2\sigma^2\} \cdot \exp\{-\theta \mathrm{e}^t\} \,\mathrm{d}t$$

Exponential change of measure requires

$$\mathcal{L}(\theta) = \mathbb{E} \exp\{-\theta X\} = \mathbb{E} \exp\{-\theta \mathrm{e}^{\sigma V}\}$$
, i.e.
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-t^2/2\sigma^2\} \cdot \exp\{-\theta \mathrm{e}^t\} \,\mathrm{d}t$$

Took $\mu = 0$ (e^{μ} scaling factor)

Exponential change of measure requires

$$\mathcal{L}(\theta) = \mathbb{E} \exp\{-\theta X\} = \mathbb{E} \exp\{-\theta e^{\sigma V}\}, \text{ i.e.}$$

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-t^2/2\sigma^2\} \cdot \exp\{-\theta e^t\} dt$$

Integral not explicit

Exponential change of measure requires

$$\mathcal{L}(\theta) = \mathbb{E} \exp\{-\theta X\} = \mathbb{E} \exp\{-\theta e^{\sigma V}\}, \text{ i.e.}$$

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-t^2/2\sigma^2\} \cdot \exp\{-\theta e^t\} dt$$

Integral not explicit

Approach: Laplace method;

Gives asymptotics in terms of Lambert's W

:

Asymptotics of $\int \exp\{h(\theta,t)\} dt$, $\theta \to \infty$:

Asymptotics of $\int \exp\{h(\theta,t)\} dt$, $\theta \to \infty$: Find maximum $t(\theta)$ of $h(\theta,t)$

Asymptotics of $\int \exp\{h(\theta,t)\} dt$, $\theta \to \infty$: Find maximum $t(\theta)$ of $h(\theta,t)$ 2nd order Taylor around $t(\theta)$ Asymptotics of $\int \exp\{h(\theta,t)\} dt$, $\theta \to \infty$:

Find maximum $t(\theta)$ of $h(\theta,t)$

2nd order Taylor around $t(\theta)$

Here $h(\theta, t) = -t^2/2\sigma^2 - \theta e^t$ Unique maximum at $\rho_{\theta} = -\mathcal{W}(\theta\sigma^2)$

Asymptotics of $\int \exp\{h(\theta, t)\} dt$, $\theta \to \infty$:

Find maximum $t(\theta)$ of $h(\theta,t)$

2nd order Taylor around $t(\theta)$

Here $h(\theta, t) = -t^2/2\sigma^2 - \theta e^t$ Unique maximum at $\rho_{\theta} = -\mathcal{W}(\theta\sigma^2)$

$\mathsf{Theorem}$

$$\mathcal{L}(heta) \; \sim \; rac{ \exp\left\{ - rac{\mathcal{W}^2(heta\sigma^2) + 2\,\mathcal{W}(heta\sigma^2)}{2\sigma^2}
ight\}}{\sqrt{1 + \mathcal{W}(heta\sigma^2)}} \, , \; \; heta
ightarrow \infty$$

Simulation algorithm

Variant of approximation:

$$\mathcal{L}(heta) \, = \, \exp\left\{-rac{\mathcal{W}^2(heta\sigma^2) + 2\,\mathcal{W}(heta\sigma^2)}{2\sigma^2}
ight\} \, \mathbb{E} g(heta,\sigma^2,V) \,, \;\; V \sim \mathit{N}(0,1)$$

Algorithm estimates $\mathbb{E}g(\theta, \sigma^2, V)$ by MC.

The exponential family

The exponential family

$$F_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathcal{L}(\theta)}F(\mathrm{d}x)$$

The exponential family

$$F_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathcal{L}(\theta)} F(\mathrm{d}x)$$
Write $\kappa(\theta) = \log \mathcal{L}(\theta)$:
$$f_{\theta}(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\{-\theta x - \log^2 x/2\sigma^2 - \kappa(\theta)\}$$

The exponential family

$$F_{\theta}(\mathrm{d}x) = \frac{\mathrm{e}^{\theta x}}{\mathcal{L}(\theta)} F(\mathrm{d}x)$$
Write $\kappa(\theta) = \log \mathcal{L}(\theta)$:
$$f_{\theta}(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\{-\theta x - \log^2 x/2\sigma^2 - \kappa(\theta)\}$$

$$\begin{split} & \text{Define } \mu_{\theta} = -\mathcal{W}(\theta\sigma^2), \qquad \sigma_{\theta}^2 = \frac{\sigma^2}{1 + \mathcal{W}(\theta\sigma^2)}. \\ & \text{Then } \lim_{\theta \to \infty} \frac{\mathbb{E}_{\theta}[X]}{\mathrm{e}^{\mu_{\theta}}} = 1, \qquad \lim_{\theta \to \infty} \frac{\mathbb{V}\mathrm{ar}_{\theta}[X]}{\mathrm{e}^{2\mu_{\theta}}\left(\mathrm{e}^{\sigma_{\theta}^2} - 1\right)} = 1. \end{split}$$

Define
$$\mu_{\theta} = -\mathcal{W}(\theta\sigma^2)$$
, $\sigma_{\theta}^2 = \frac{\sigma^2}{1 + \mathcal{W}(\theta\sigma^2)}$.

Then $\lim_{\theta \to \infty} \frac{\mathbb{E}_{\theta}[X]}{\mathrm{e}^{\mu_{\theta}}} = 1$, $\lim_{\theta \to \infty} \frac{\mathbb{V}\mathrm{ar}_{\theta}[X]}{\mathrm{e}^{2\mu_{\theta}}\left(\mathrm{e}^{\sigma_{\theta}^2} - 1\right)} = 1$.

I.e., $X/\mathrm{e}^{\mu_{\theta}} \to 1$ $(X \approx 1/\theta \text{ w.r.t. } \mathbb{P}_{\theta})$

Define
$$\mu_{\theta} = -\mathcal{W}(\theta\sigma^2)$$
, $\sigma_{\theta}^2 = \frac{\sigma^2}{1 + \mathcal{W}(\theta\sigma^2)}$.
Then $\lim_{\theta \to \infty} \frac{\mathbb{E}_{\theta}[X]}{\mathrm{e}^{\mu_{\theta}}} = 1$, $\lim_{\theta \to \infty} \frac{\mathbb{V}\mathrm{ar}_{\theta}[X]}{\mathrm{e}^{2\mu_{\theta}}\left(\mathrm{e}^{\sigma_{\theta}^2} - 1\right)} = 1$.
I.e., $X/\mathrm{e}^{\mu_{\theta}} \to 1$ $(X \approx 1/\theta \text{ w.r.t. } \mathbb{P}_{\theta})$

Asymptotic shape

- 1) lognormal
- 2) gamma
- 3) normal

Define
$$\mu_{\theta} = -\mathcal{W}(\theta\sigma^2)$$
, $\sigma_{\theta}^2 = \frac{\sigma^2}{1 + \mathcal{W}(\theta\sigma^2)}$.

Then $\lim_{\theta \to \infty} \frac{\mathbb{E}_{\theta}[X]}{\mathrm{e}^{\mu_{\theta}}} = 1$, $\lim_{\theta \to \infty} \frac{\mathbb{V}\mathrm{ar}_{\theta}[X]}{\mathrm{e}^{2\mu_{\theta}}\left(\mathrm{e}^{\sigma_{\theta}^2} - 1\right)} = 1$.

I.e., $X/\mathrm{e}^{\mu_{\theta}} \to 1$ $(X \approx 1/\theta \text{ w.r.t. } \mathbb{P}_{\theta})$

Asymptotic shape

- 1) lognormal
- 2) gamma
- 3) normal

Simulation algorithm:

Generate r.v. from F_{θ} by acceptance-rejection with gamma proposal

Requires $\mathcal{L}(\theta)$ and $\mathbb{E}_{\theta}X$, $\mathbb{V}\mathrm{ar}_{\theta}X$

Requires $\mathcal{L}(\theta)$ and $\mathbb{E}_{\theta}X$, $\mathbb{V}\mathrm{ar}_{\theta}X$ (at least!)

Requires $\mathcal{L}(\theta)$ and $\mathbb{E}_{\theta}X$, $\mathbb{V}\mathrm{ar}_{\theta}X$ Use exponential family asymptotics

Requires $\mathcal{L}(\theta)$ and $\mathbb{E}_{\theta}X$, $\mathbb{V}\mathrm{ar}_{\theta}X$ Use exponential family asymptotics E.g. ideal saddlepoint $\theta(x)$ solution of $\mathbb{E}_{\theta(x)}X=x$;

Requires $\mathcal{L}(\theta)$ and $\mathbb{E}_{\theta}X$, $\mathbb{V}\mathrm{ar}_{\theta}X$ Use exponential family asymptotics E.g. ideal saddlepoint $\theta(x)$ solution of $\mathbb{E}_{\theta(x)}X = x$; insert approximation for $\mathbb{E}_{\theta}X = x$ to get approximation $\widetilde{\theta}(x) = \frac{\gamma(x)\mathrm{e}^{\gamma(x)}}{\sigma^2}$ where $\gamma(x) = \frac{-1 - \log x + \sqrt{(1 - \log x)^2 + 2\sigma^2}}{2}$.

Requires $\mathcal{L}(\theta)$ and $\mathbb{E}_{\theta}X$, $\mathbb{V}\mathrm{ar}_{\theta}X$ Use exponential family asymptotics E.g. ideal saddlepoint $\theta(x)$ solution of $\mathbb{E}_{\theta(x)}X=x$; insert approximation for $\mathbb{E}_{\theta}X=x$ to get approximation $\widetilde{\theta}(x)=\frac{\gamma(x)\mathrm{e}^{\gamma(x)}}{\sigma^2}$ where $\gamma(x)=\frac{-1-\log x+\sqrt{(1-\log x)^2+2\sigma^2}}{2}$.

Resulting approximations for cdf $\mathbb{P}(S_n \leq z)$ and pdf uniformly good as $z \downarrow 0$

Requires $\mathcal{L}(\theta)$ and $\mathbb{E}_{\theta}X$, $\mathbb{V}\mathrm{ar}_{\theta}X$ Use exponential family asymptotics E.g. ideal saddlepoint $\theta(x)$ solution of $\mathbb{E}_{\theta(x)}X=x$; insert approximation for $\mathbb{E}_{\theta}X=x$ to get approximation

$$\widetilde{\theta}(x) = \frac{\gamma(x)e^{\gamma(x)}}{\sigma^2}$$
where $\gamma(x) = \frac{-1 - \log x + \sqrt{(1 - \log x)^2 + 2\sigma^2}}{2}$.

Resulting approximations for cdf $\mathbb{P}(S_n \leq z)$ and pdf uniformly good as $z \downarrow 0$

Simulation algorithm:

Importance sampling, simulate from F_{θ} and simulate $\mathcal{L}(\theta)$

Portfolio of n assets, n = 4, 16, 64, 256

Portfolio of n assets, n=4,16,64,256 l.i.d. lognomal returns, $\mu=0$.

Portfolio of n assets, n=4,16,64,256 l.i.d. lognomal returns, $\mu=0$. Yearly volatility 0.25 Period: a year, month, week, day

Portfolio of n assets, n=4,16,64,256 l.i.d. lognomal returns, $\mu=0$. Yearly volatility 0.25 Period: a year, month, week, day $\mathbb{P}(S_n \leq z)$ of order e–2 to e–4 (Basel II).

Portfolio of n assets, n = 4, 16, 64, 256

I.i.d. lognomal returns, $\mu = 0$.

Yearly volatility 0.25

Period: a year, month, week, day

 $\mathbb{P}(S_n \leq z)$ of order e–2 to e–4 (Basel II).

Table : Approximation of the CDF of a lognormal sum with n=16 and $\sigma=0.125$ (period = a quarter).

X	z = nx	$\tilde{\theta}(x)$	Saddle	Simulation
0.9000	14.40	7.99	1.63e-04	1.63 e-04 \pm 1.96 e-06
0.9094	14.55	7.18	5.51e-04	$5.50 \text{e-}04 \pm 6.32 \text{e-}06$
0.9187	14.70	6.40	1.66e-03	$1.66 \text{e-}03\pm1.82 \text{e-}05$
0.9281	14.85	5.64	4.50e-03	$4.48 \text{e-}03 \pm 4.67 \text{e-}05$
0.9375	15.00	4.90	1.10e-02	$1.10 \text{e-}02\pm1.08 \text{e-}04$
0.9469	15.15	4.19	2.42e-02	$2.40 e-02 \pm 2.23 e-04$
0.9563	15.30	3.49	4.85e-02	$4.85 \text{e-}02\pm4.18 \text{e-}04$

Problem: $\mathbb{P}(S_n \leq z) \approx ??$

Problem: $\mathbb{P}(S_n \leq z) \approx ??$

Both papers (ours and GT) exact as $z \to 0$

Problem: $\mathbb{P}(S_n \leq z) \approx ??$

Both papers (ours and GT) exact as $z \to 0$ Ours also as $n \to \infty$ (with some refinement)

Problem: $\mathbb{P}(S_n \leq z) \approx ??$

Both papers (ours and GT) exact as $z \to 0$ Ours also as $n \to \infty$ (with some refinement) GT can do dependence, different μ_i, σ_i^2

Problem: $\mathbb{P}(S_n \leq z) \approx ??$

Both papers (ours and GT) exact as $z \to 0$ Ours also as $n \to \infty$ (with some refinement)

GT can do dependence, different μ_i , σ_i^2

We are precise in range $\mathbb{P}(S_n \leq z) \in (e-4, e-2)$, GT not.

Thank you !!!