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Motivation

n assets in portfolio, long position

value after period: S =
n∑

i=1

Xi ,

each Xi lognormal, Xi = exp{µi + σiVi}, Vi ∼N(0,1)
(value before: build in µi )

small values of S : loss.

Goal: assess P(S ≤ z) for small z .

Only ref’s:
Rojas-Nandayapa PhD thesis 2008
Gulisashvili & Tankov 2013
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Right tail, lognormal case

P(S ≥ z) more standard

Lognormal right tail subexponential (heavy-tailed)

P(S ≥ z) ∼ nP(X > x) in i.i.d. case

SA-Rojas-Nandayapa 2008: Gaussian copula, different µi , σ
2
i
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Right tail of S = Sn, light tails of the Xi

Saddlepoint approximation
X1,X2, . . . i.i.d. ∼ G

Change of measure in exponential family: Gθ(dx) =
eθx

EeθX
G (dx)

In P(Sn ≥ z), write z = nx
Solve EθX = x for θ

P(Sn ≥ nx) =
1[

EeθX
]nEθ

[
exp{θSn}; Sn ≥ nx

]
. (*)

Sn is centered in Pθ-distribution: EθSn = z
Apply central limit expansions to reduce (*)

Do the same in lognormal left tail
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Lognormal Laplace transform

Exponential change of measure requires

L(θ) = E exp{−θX} = E exp{−θeσV }, i.e.∫ ∞
−∞

1√
2πσ

exp{−t2/2σ2} · exp{−θet}dt

Integral not explicit
Approach: Laplace method;

Gives asymptotics in terms of Lambert’s W

Took µ = 0 (eµ scaling factor)
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Lambert W function

xex
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Laplace method

Asymptotics of
∫

exp{h(θ, t)}dt, θ →∞

:

Find maximum t(θ) of h(θ, t)
2nd order Taylor around t(θ)

Here h(θ, t) = −t2/2σ2 − θet
Unique maximum at ρθ = −W(θσ2)

Theorem

L(θ) ∼
exp

{
− W

2(θσ2) + 2W(θσ2)

2σ2

}
√

1 +W(θσ2)
, θ →∞.
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Simulation algorithm

Variant of approximation:

L(θ) = exp

{
−W

2(θσ2) + 2W(θσ2)

2σ2

}
Eg(θ, σ2,V ) , V ∼ N(0, 1)

Algorithm estimates Eg(θ, σ2,V ) by MC.
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The exponential family

Fθ(dx) =
eθx

L(θ)
F (dx)

Write κ(θ) = logL(θ):

fθ(x) =
1

x
√

2πσ
exp{−θx − log2 x/2σ2 − κ(θ)}

0 0.5 1 1.5 2
0
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Define µθ = −W(θσ2), σ2θ =
σ2

1 +W(θσ2)
.

Then lim
θ→∞

Eθ[X ]

eµθ
= 1, lim

θ→∞

Varθ[X ]

e2µθ
(
eσ

2
θ − 1

) = 1.

I.e., X/eµθ → 1 (X ≈ 1/θ w.r.t. Pθ)

Asymptotic shape
1) lognormal
2) gamma
3) normal

Simulation algorithm:
Generate r.v. from Fθ by acceptance-rejection with gamma
proposal
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Saddlepoint approximations

Requires L(θ) and EθX , VarθX (at least!)
Use exponential family asymptotics
E.g. ideal saddlepoint θ(x) solution of Eθ(x)X = x ;
insert approximation for EθX = x to get approximation

θ̃(x) =
γ(x)eγ(x)

σ2

where γ(x) =
−1− log x +

√
(1− log x)2 + 2σ2

2
.

Resulting approximations for cdf P(Sn ≤ z) and pdf
uniformly good as z ↓ 0

Simulation algorithm:
Importance sampling, simulate from Fθ and simulate L(θ)
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Numerical examples

Portfolio of n assets, n = 4, 16, 64, 256
I.i.d. lognomal returns, µ = 0.
Yearly volatility 0.25
Period: a year, month, week, day
P(Sn ≤ z) of order e–2 to e–4 (Basel II).

Table : Approximation of the CDF of a lognormal sum with n = 16 and
σ = 0.125 (period = a quarter).

x z = nx θ̃(x) Saddle Simulation

0.9000 14.40 7.99 1.63e-04 1.63e-04 ± 1.96e-06
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Comparison with Gulisashvili & Tankov 2013

Problem: P(Sn ≤ z) ≈??

Both papers (ours and GT) exact as z → 0
Ours also as n→∞ (with some refinement)
GT can do dependence, different µi , σ

2
i

We are precise in range P(Sn ≤ z) ∈ (e − 4, e − 2), GT not.
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Thank you !!!
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