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n assets in portfolio, long position
n
value after period: § = ZX,-,

i=1
each X; lognormal, X; = exp{u; + o;Vi}, Vi ~N(0,1)
(value before: build in ;)

small values of S: loss.

Goal: assess - for small z.

Only ref's:
Rojas-Nandayapa PhD thesis 2008
Gulisashvili & Tankov 2013
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Right tail, lognormal case

- more standard

Lognormal right tail subexponential (heavy-tailed)

SA-Rojas-Nandayapa 2008: Gaussian copula, different ,u,-,a,-z
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Right tail of S = S, light tails of the X;

Saddlepoint approximation

X1, Xo,...0id. ~ G

0x
Change of measure in exponential family: Gyp(dx) = FeiX G(dx)
In P(S, > z), write z = nx
Solve EyX = x for
P(Sp > nx) = ———Eg[exp{0S,}; Sn > nx]. *)

Ee GX]"
S, is centered in Py-distribution: EyS, = z
Apply central limit expansions to reduce (*)
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Laplace transform
Lognormal Laplace transform

Exponential change of measure requires
L(0) = Eexp{—0X} = Eexp{—60e”"}, i.e.

oo
1 2 /5 2
exp{—t°/20°} - exp{—0e'} dt
| el el -0et)
Integral not explicit
Approach: Laplace method;

Gives asymptotics in terms of Lambert's W



Laplace transform

Lambert W function
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Laplace transform

Laplace method

Asymptotics of [ exp{h(f,t)}dt, 6 — co:
Find maximum t(0) of h(6,t)

2nd order Taylor around t(6)

Here h(0,t) = —t2/202 — fet
Unique maximum at pg = —W(6o?)

W2(052) + 2 W(0o?)
202
1+ W(60?)

L

, 0 — .

o - oo -




Laplace transform
Simulation algorithm

Variant of approximation:

W2(052) +2W(002)
202

L(h) = exp{— }Eg(9,02, V), V ~ N(0,1)

Algorithm estimates Eg(6, o2, V') by MC.
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e@x
Fo(dx) = ﬁ(G)F(dx)

Write k(0) = log L(0):
fo(x) = oo exp{—0x — log® x/20° — K(0)}
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2
. o 2 2 (2
Define He = —W(HO' ), Op = H—TM
Eq[X X
Then tim X1y _VarelX
0—oc0 ek 60— 00 ez,U«G (egg — 1)

lLe., X/et0 — 1 (X ~1/0 w.r.t. Py)

Asymptotic shape
1) lognormal
2) gamma
3) normal

Simulation algorithm:
Generate r.v. from Fy by acceptance-rejection with gamma
proposal



Saddlepoint approximation
Saddlepoint approximations



Saddlepoint approximation
Saddlepoint approximations

Requires £(0) and EpX, VargX



Saddlepoint approximation
Saddlepoint approximations

Requires £(0) and EgX, VaryX (at least!)



Saddlepoint approximation
Saddlepoint approximations

Requires £(0) and EpX, VargX
Use exponential family asymptotics



Saddlepoint approximation
Saddlepoint approximations

Requires £(0) and EpX, VargX
Use exponential family asymptotics
E.g. ideal saddlepoint 6(x) solution of Ey(,) X = x;



Saddlepoint approximation
Saddlepoint approximations

Requires £(0) and EpX, VargX

Use exponential family asymptotics

E.g. ideal saddlepoint 6(x) solution of Ey(,) X = x;

insert approximation for EgX = x to get approximation
( )= ~y(x)e7(x)

where v(x) =

—1 —log x + /(1 — log x)2 + 202
> :




Saddlepoint approximation
Saddlepoint approximations

Requires £(0) and EpX, VargX

Use exponential family asymptotics

E.g. ideal saddlepoint 6(x) solution of Ey(,) X = x;

insert approximation for EgX = x to get approximation
i) = V(X)e”(x)

where v(x) =

—1 —log x + /(1 — log x)2 + 202

5 .
Resulting approximations for cdf P(S, < z) and pdf
uniformly good as z | 0



Saddlepoint approximation
Saddlepoint approximations

Requires £(0) and EpX, VargX

Use exponential family asymptotics

E.g. ideal saddlepoint 6(x) solution of Ey(,) X = x;

insert approximation for EgX = x to get approximation
i) = V(X)e”(x)

where v(x) =

—1 —log x + /(1 — log x)2 + 202

5 .
Resulting approximations for cdf P(S, < z) and pdf
uniformly good as z | 0

Simulation algorithm:
Importance sampling, simulate from Fy and simulate £(6)
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Numerical examples

Portfolio of n assets, n = 4,16, 64,256
l.i.d. lognomal returns, p = 0.

Yearly volatility 0.25

Period: a year, month, week, day

P(S, < z) of order e-2 to e—4 (Basel Il).

Table : Approximation of the CDF of a lognormal sum with n = 16 and
o = 0.125 (period = a quarter).

X z=nx 0O(x) Saddle Simulation
0.9000 1440 7.99 1.63e-04 1.63e-04 £ 1.96e-06
0.9094 1455 7.18 5.5le-04 5.50e-04 £ 6.32e-06
0.9187 1470 6.40 1.66e-03 1.66e-03 £ 1.82e-05
0.9281 14.85 5.64 4.50e-03 4.48e-03 £ 4.67e-05
0.9375 1500 490 1.10e-02 1.10e-02 +£ 1.08e-04
0.9469 15.15 419 2.42e-02 2.40e-02 £ 2.23e-04
0.9563 15.30 3.49 4.85e-02 4.85e-02 £ 4.18e-04
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Numerical examples

Comparison with Gulisashvili & Tankov 2013

Both papers (ours and GT) exact as z — 0

Ours also as n — oo (with some refinement)

GT can do dependence, different ,u,-,a,-z

We are precise in range P(S, < z) € (e — 4,e — 2), GT not.
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