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Objectives and Findings

• Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.

I Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of the portfolio?

• A non-parametric method based on the data at hand.

• Analytical expressions for these maximum and minimum

• Implications:

I Current regulation is subject to very high model risk, even if
one knows the multivariate distribution almost completely.

I Able to quantify model risk for a chosen risk measure. We can
identify for which risk measures it is meaningful to develop
accurate multivariate models.

Carole Bernard Assessing Model Risk in High Dimensions 2



Introduction Model Risk First Approach Illustration Value-at-Risk Conclusions

Objectives and Findings

• Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.

I Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of the portfolio?

• A non-parametric method based on the data at hand.

• Analytical expressions for these maximum and minimum

• Implications:

I Current regulation is subject to very high model risk, even if
one knows the multivariate distribution almost completely.

I Able to quantify model risk for a chosen risk measure. We can
identify for which risk measures it is meaningful to develop
accurate multivariate models.

Carole Bernard Assessing Model Risk in High Dimensions 2



Introduction Model Risk First Approach Illustration Value-at-Risk Conclusions

Model Risk

1 Goal: Assess the risk of a portfolio sum S =
∑d

i=1 Xi .

2 Choose a risk measure ρ(·), “fit” a multivariate distribution
for (X1,X2, ...,Xd) and compute ρ(S)

3 How about model risk? How wrong can we be?

ρ+F := sup

{
ρ

(
d∑

i=1

Xi

)}
, ρ−F := inf

{
ρ

(
d∑

i=1

Xi

)}

where the supremum and the infimum are taken over all other
(joint distributions of) random vectors (X1,X2, ...,Xd) that
“agree” with the available information
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Choice of the risk measure

• Variance of X

• Value-at-Risk of X at level p ∈ (0, 1)

VaRp (X ) = F−1X (p) = inf {x ∈ R | FX (x) > p} (1)

• Tail Value-at-Risk or Expected Shortfall of X

TVaRp(X ) =
1

1− p

∫ 1

p
VaRu(X )du p ∈ (0, 1)

and p → TVaRp is continuous.
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Assessing Model Risk on Dependence with d Risks

I Marginals known

I Dependence unknown

I Already a challenging problem in d > 3 dimensions

• Wang and Wang (2011, JMVA)
• Embrechts, Puccetti, Rüschendorf (2013, JBF): algorithm

(RA) to find bounds on VaR

I Issues
• bounds are generally very wide
• ignore all information on dependence.
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Illustration with marginals N(0,1)
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Illustration with marginals N(0,1)

F1 =
2⋂

k=1

{qβ 6 Xk 6 q1−β}
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Our assumptions on the cdf of (X1,X2, ...,Xd)

F ⊂ Rd (“trusted” or “fixed” area)
U =Rd\F (“untrusted”).
We assume that we know:

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., d ,

(ii) the distribution of (X1,X2, ...,Xd) | {(X1,X2, ...,Xd) ∈ F}.
(iii) P ((X1,X2, ...,Xd) ∈ F)

I joint distribution of (X1,X2, ...,Xd) is thus known if F =Rd

and U = ∅.
I When only marginals are known: U = Rd and F = ∅.
I Our Goal: Find bounds on ρ(S) := ρ(X1 + ...+ Xd) when

(X1, ...,Xd) satisfy (i), (ii) and (iii).

2 methods: non-parametric approach or Monte-Carlo simulation
from theoretical bounds.
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First Approach

Approximation of Bounds

(for variance and TVaR)
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Example:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (`f = 3, pf = 3/8)

as trustworthy than the initial one (note indeed that we do not know the dependence be-
tween the Xi, conditionally on (X1, X2, ..., Xd) ∈ U). Without loss of generality, we can
thus always assume that the matrix UN depicts a comonotonic dependence (in each column,
the values are sorted in decreasing order, that is such that xm1k � xm2k � ... � xm�uk

for all k = 1, 2, ..., d). Finally, for FN (and thus also for the corresponding part of XN )
we can assume that the �f observations (xij1, xij2...xijd) appear in such a way that for the
sums of the components, ie, sj := xij1 + xij2 + ... + xijd ( j = 1, 2, ..., �f) it holds that
s1 �s2 �...� s�f .

From now on, without any loss of generality, the observed data points are reported in
the following matrix M

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi11 xi12 ... xi1d

xi21 xi22 ... xi2d

...
...

...
...

xi�f 1 xi�f 2 ... xi�f d

xm11 xm12 ... xm1d

xm21 xm22 ... xm2d

...
...

...
...

xm�u1 xm�u2 ... xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where the grey area reflects FN and the white area reflects UN . The corresponding vec-
tors Sf

N and Su
N consisting of sums of the components for each observation in the trusted

(respectively untrusted) part:

[
Sf
N

Su
N

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
...

s�f
s̃1 := xm11 + xm12 + ...+ xm1d

s̃2 := xm21 + xm22 + ...+ xm2d

...
s̃�u := xm�u1 + xm�u2 + ...+ xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

While s1 �s2 �...� s�f are trusted, the sums s̃i change when varying the choice of depen-
dence in UN . In fact, the set {i1, ..., i�f } can be seen as the collection of states (scenarios)
in which the corresponding observations are trusted whereas the set {m1, ...,m�u} provides
the states in which there is doubt on the dependence structure.

We now provide a simple example of this setup for pedagogical purpose. It will be used
throughout the paper to illustrate each algorithm that we propose. This toy example is not
meant to represent a realistic set of observations as in true applications, there is a large
number of observations (here N = 8) and possibly a large number of variables (here d = 3).
The 8 observations are given as follows with 3 observations trusted (�f = 3), which appear
in the grey area of the matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
1 1 1
0 3 2
0 2 1
2 4 2
3 0 1
1 1 2
4 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
3
5
3
8
4
4
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

15
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• The matrix M is split into two parts: FN : trusted
observations, UN : “untrusted” part.

• Rearranging the values xik (i = 1, 2, ...,N) within the k−th
column does not affect the marginal distribution Xk but only
changes the observed dependence.

• `f : number of elements in FN , `u : number of elements in UN

N = `f + `u.

• M has `f grey rows and `u white rows.

• S f
N and Su

N consist of sums in FN and UN .
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Without loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

10
7
4
3
1

⎤
⎥⎥⎥⎥⎦

(19)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8 values)
one also has the following representation of SN ,

SN = ISf
N + (1− I)Su

N (20)

where I =1 if if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used before (see Definition 4 and Proposition 2.9)

whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
i=1 Zi. In

this paper, we aim at finding worst case dependences allowing for a robust risk assessment
of the portfolio sum S (SN ). This amounts to rearranging the outcomes in the columns of
the untrusted part UN such that the risk measure at hand for SN becomes maximized (resp.
minimized).

3.3 Bounds on standard deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have initialized a comonotonic structure already
(without loss of generality) and the corresponding values of the sums are exactly the values
s̃i (i = 1, 2, ..., �u) reported for Su

N in (17)). The upper bound on variance is then computed
as

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃i − s̄)2

⎞
⎠ (21)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N

⎛
⎝

�f∑

i=1

si +

�u∑

i=1

s̃i

⎞
⎠ (22)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must be

as close as possible to each other, ideally Su
N must be constant. In this respect the concept

of complete mixability appears as a theoretical device. “Complete mixability” refers to
the dependence structure which makes the sum Su

N constant (Wang and Wang (2011)).
To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
Rüschendorf (2013) on the matrix UN (untrusted part) to be as close as possible to the
complete mixability condition. For completeness, the algorithm is presented in Appendix B
of this paper. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃mi − s̄)2

⎞
⎠ (23)

16
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Maximum variance (or maximum TVaR)

upper Fréchet bound, comonotonic scenario

• To maximize the variance of SN : comonotonic scenario on UN ,
and the corresponding values of the sums s̃i (i = 1, 2, ..., `u)

• Average sum s̄ = 5.5.

• Maximum variance

1

8

(
3∑

i=1

(si − s̄)2 +
5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75
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Minimum variance (or minimum TVaR)

Antimonotonicity in d dimensions?
The rearrangement algorithm (RA) of Puccetti & Rüschendorf,
2012 aims to obtain sums with variance as small as possible.

Idea of the RA

I Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns.

∀k ∈ {1, 2, ..., d},X a
k antimonotonic with

∑

j 6=k

Xj

I After each step, var
(

X a
k +

∑
j 6=k Xj

)
6 var

(
Xk +

∑
j 6=k Xj

)

where X a
k is antimonotonic with

∑
j 6=k Xj

Carole Bernard Assessing Model Risk in High Dimensions 14
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Example: Minimum VarianceWithout loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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8
8
3
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7
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(19)
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whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
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To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
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N
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�f∑
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�u∑
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(s̃mi − s̄)2

⎞
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16

Minimum variance obtained when Su
N has smallest variance (ideally

constant, “mixability”)

where s̄ is computed as in (22).

We illustrate the upper and lower bounds (21) and (23) for the variance derived above
with the matrix M of observations given in (19). We then use the comonotonic structure

for the untrusted part of the matrix M and compute the vectors of sums Sf
N and Su

N as
defined above in (19). The average sum is s̄ = 5.5. The maximum variance is equal to

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75

For the lower bound, we apply the RA on UN and we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
1 1 3
0 3 2
1 2 2
3 1 1
4 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

5
5
5
5
5

⎤
⎥⎥⎥⎥⎦

(24)

With an average sum s̄ = 5.5, the minimum variance can be calculated as

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃mi − s̄)2

)
≈ 2.5

3.4 Bounds on TVaR

Assume that we want the TVaR at probability level p so that for ease of exposition

k := N(1− p) (25)

where k is integer. Similarly to the case of maximizing the variance it follows from Proposi-
tion 2.4, that in order to obtain the maximum TVaR one needs a comonotonic scenario on
UN . Hence, we just need to select the k highest values from Sf

N and Su
N as computed in (17).

Let us label these values by s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and we can then easily

compute the maximum TVaR at probability level p. Also the minimum TVaR is obtained
similarly as the minimum variance. First apply the RA on the untrusted part UN to get
the variance on the (new) sum Su

N as small as possible. Then select the k highest values

out of Sf
N and Su

N , say: s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and compute the minimum

TVaR.

Let us consider the previous example again. Let us choose p = 5/8, so that k = 3.
The highest k = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67).
After application of the RA we obtain (24) for Su

N and thus the highest 3 outcomes that we

observe for Su
N and Sf

N are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7.

3.5 Bounds on VaR

To compute the maximum VaR, we present an algorithm that can be applied directly on the
matrix M of the observed data, and thus leads to non-parametric bounds on VaR. Recall
that the first �f rows of the matrix M correspond to FN whereas �u denotes the number

of rows of UN (N = �f + �u). In the algorithm, we also make use of Sf
N and Su

N that we
consider as random variables. To compute the VaR at probability level p, we define

k := N(1− p) (26)

17

The minimum variance is
1
8

(∑3
i=1(si − s̄)2 +

∑5
i=1(s̃mi − s̄)2

)
≈ 2.5
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Example d = 20

I (X1, ...,X20) independent multivariate normal on

F := [qβ, q1−β]d ⊂ Rd

(for some β 6 50%) where qγ : γ-quantile of N(0,1)

I β = 0%: no uncertainty (multivariate assumption)

I β = 50%: full uncertainty

U = ∅ pf ≈ 98% pf ≈ 82% U = Rd

F = [qβ , q1−β]d β = 0% β = 0.05% β = 0.5% β = 50%
ρ = 0 4.47 (4.4 , 5.65) (3.89 , 10.6) (0 , 20)

Carole Bernard Assessing Model Risk in High Dimensions 16
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Bounds on Value-at-Risk

Previous approach works for all risk measures that satisfy convex
order... But not for Value-at-Risk

I to maximize VaRp, the idea is to change the comonotonic
dependence of Zi such that the sum is constant in the tail
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Numerical Results, 20 independent N(0, 1), F = [qβ, q1−β]d

U = ∅ pf ≈ 98% pf ≈ 82% U = Rd

β = 0% β = 0.05% β = 0.5% β = 0.5
p=95% 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( -2.17 , 41.3 )

p=99.95% 25.1 ( 24.2 , 71.1 ) ( 21.5 , 71.1 ) ( -0.035 , 71.1 )

• U = ∅ : No uncertainty (multivariate standard normal model).

I The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

I For VaR at high probability levels (p = 99.95%), despite all
the added information on dependence, the bounds are
still wide!
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Conclusions

I Assess model risk with partial information and given marginals
(Monte Carlo from fitted model or non-parametrically)

I Algorithm for variance, TVaR and VaR

I Application to the model risk of a portfolio of stocks with
market data

I How to choose the trusted area F optimally?

I N too small: possible to improve the efficiency of the
algorithm by re-discretizing using the fitted marginal f̂i .

I Possible to amplify the tails of the marginals by re-discretizing
with a probability distortion

I Additional information on dependence can be incorporated

- variance of the sum (WP with Rüschendorf,Vanduffel)
- higher moments (WP with Denuit, Vanduffel)
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I Bernard, C., L. Rüschendorf, and S. Vanduffel (2013): “VaR Bounds with
a Variance Constraint,” Working Paper.

I Embrechts, P., G. Puccetti, and L. Rüschendorf (2013): “Model
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I Puccetti, G., and L. Rüschendorf (2012): “Computation of sharp bounds
on the distribution of a function of dependent risks,” Journal of
Computational and Applied Mathematics, 236(7), 1833–1840.

I Wang, B., and R. Wang (2011): “The complete mixability and convex
minimization problems with monotone marginal densities,” Journal of
Multivariate Analysis, 102(10), 1344–1360.

I Wang, B., and R. Wang (2014): “Joint Mixability,” Working paper.

Carole Bernard Assessing Model Risk in High Dimensions 24



Introduction Model Risk First Approach Illustration Value-at-Risk Conclusions

Second Approach

Model Risk Analytical Bounds
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Some Notation

• Define pf := P(I = 1) and pu := P(I = 0) where

I := 1(X1,X2,...,Xd )∈F (2)

• Let U ∼ U(0, 1) independent of the event
“(X1,X2, ...,Xd) ∈ F” (so U is independent of I).

• Define (Z1,Z2, ...,Zd) by

Zi = F−1Xi |(X1,X2,...,Xd )∈U (U), i = 1, 2, ..., d (3)

• All Zi (i = 1, 2, ..., d) are increasing in U and thus
(Z1,Z2, ...,Zd) is comonotonic with known distribution.
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Bounds on Variance

Theorem (Bounds on the variance of
∑d

i=1 Xi )

Let (X1,X2, ...,Xd) that satisfies properties (i), (ii) and (iii) and let
(Z1,Z2, ...,Zd) and I as defined before.

var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

E (Zi )

)
6 var

(
d∑

i=1

Xi

)

6 var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi

)
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Bounds on VaR

Theorem (Constrained VaR Bounds for
∑d

i=1 Xi )

Assume (X1,X2, ...,Xd) satisfies properties (i), (ii) and (iii), and let
(Z1,Z2, ...,Zd), U and I as defined before. Define the variables Li

and Hi as

Li = LTVaRU (Zi ) and Hi = TVaRU (Zi )

and let

mp := VaRp

(
I
∑d

i=1 Xi + (1− I)
∑d

i=1 Li

)

Mp := VaRp

(
I
∑d

i=1 Xi + (1− I)
∑d

i=1 Hi

)

Bounds on the Value-at-Risk are mp 6 VaRp

(∑d
i=1 Xi

)
6 Mp.
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Value-at-Risk of a Mixture

Lemma

Consider a sum S = IX + (1− I)Y , where I is a Bernoulli
distributed random variable with parameter pf and where the
components X and Y are independent of I. Define α∗ ∈ [0, 1] by

α∗ := inf

{
α ∈ (0, 1) | ∃β ∈ (0, 1)

{ pf α + (1− pf )β = p
VaRα(X ) > VaRβ(Y )

}

and let β∗ = p−pf α∗
1−pf ∈ [0, 1]. Then, for p ∈ (0, 1) ,

VaRp(S) = max {VaRα∗(X ),VaRβ∗(Y )}

Applying this lemma, one can prove a more convenient expression
to compute the VaR bounds.
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Let us define T := F−1∑
i Xi |(X1,X2,...,Xd )∈F (U).

Theorem (Alternative formulation of the upper bound for VaR)

Assume (X1,X2, ...,Xd) satisfies properties (i), (ii) and (iii), and let
(Z1,Z2, ...,Zd) and I as defined before.

With α1 = max
{

0, p+pf−1
pf

}
and α2 = min

{
1, p

pf

}
,

α∗ := inf

{
α ∈ (α1, α2) | VaRα(T ) > TVaR p−pf α

1−pf

(∑d
i=1 Zi

)}

When p+pf−1
pf

< α∗ <
p
pf

,

Mp = TVaR p−pf α∗
1−pf

(
d∑

i=1

Zi

)

The lower bound mp is obtained by replacing “TVaR” by “LTVaR”.

Carole Bernard Assessing Model Risk in High Dimensions 30


	presentation
	Introduction
	Model Risk
	First Approach
	Illustration
	Value-at-Risk
	Conclusions


