A New Approach to Assessing Model Risk in High Dimensions

Carole Bernard (University of Waterloo) & Steven Vanduffel (Vrije Universiteit Brussel)

Samos, May 2014.

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of *d* individual dependent risks.
 - ▶ Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?
- A non-parametric method based on the data at hand.
- Analytical expressions for these maximum and minimum

Objectives and Findings

- Model uncertainty on the risk assessment of an aggregate portfolio: the sum of *d* individual dependent risks.
 - ▶ Given all information available in the market, what can we say about the maximum and minimum possible values of a given risk measure of the portfolio?
- A non-parametric method based on the data at hand.
- Analytical expressions for these maximum and minimum
- Implications:
 - ► Current regulation is subject to very high model risk, even if one knows the multivariate distribution almost completely.
 - ▶ Able to quantify model risk for a chosen risk measure. We can identify for which risk measures it is meaningful to develop accurate multivariate models.

- **1** Goal: Assess the risk of a portfolio sum $S = \sum_{i=1}^{d} X_i$.
- ② Choose a risk measure $\rho(\cdot)$, "fit" a multivariate distribution for $(X_1, X_2, ..., X_d)$ and compute $\rho(S)$
- Mow about model risk? How wrong can we be?

$$\rho_{\mathcal{F}}^+ := \sup \left\{ \rho \left(\sum_{i=1}^d X_i \right) \right\}, \quad \rho_{\mathcal{F}}^- := \inf \left\{ \rho \left(\sum_{i=1}^d X_i \right) \right\}$$

where the supremum and the infimum are taken over all other (joint distributions of) random vectors $(X_1, X_2, ..., X_d)$ that "agree" with the available information

Choice of the risk measure

- Variance of X
- **Value-at-Risk** of X at level $p \in (0,1)$

$$\operatorname{VaR}_{p}(X) = F_{X}^{-1}(p) = \inf \left\{ x \in \mathbb{R} \mid F_{X}(x) \geqslant p \right\} \tag{1}$$

Tail Value-at-Risk or Expected Shortfall of X

$$\mathsf{TVaR}_p(X) = rac{1}{1-p} \int_p^1 \mathsf{VaR}_u(X) \mathrm{d}u \qquad p \in (0,1)$$

and $p \to \mathsf{TVaR}_p$ is continuous.

Assessing Model Risk on Dependence with d Risks

- Marginals known
- ▶ Dependence unknown
- ▶ Already a challenging problem in $d \ge 3$ dimensions
 - Wang and Wang (2011, JMVA)
 - Embrechts, Puccetti, Rüschendorf (2013, JBF): algorithm (RA) to find bounds on VaR
- Issues
 - bounds are generally very wide
 - ignore all information on dependence.

Introduction Model Risk First Approach Illustration Value-at-Risk Conclusion

Illustration with marginals N(0,1)

Illustration with marginals N(0,1)

$$\mathcal{F}_1 = \bigcap_{k=1}^2 \left\{ q_\beta \leqslant X_k \leqslant q_{1-\beta} \right\}$$

Our assumptions on the cdf of $(X_1, X_2, ..., X_d)$

 $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted").

We assume that we know:

- (i) the marginal distribution F_i of X_i on \mathbb{R} for i=1,2,...,d,
- (ii) the distribution of $(X_1, X_2, ..., X_d) \mid \{(X_1, X_2, ..., X_d) \in \mathcal{F}\}.$
- (iii) $P((X_1, X_2, ..., X_d) \in \mathcal{F})$
 - ightharpoonup joint distribution of $(X_1, X_2, ..., X_d)$ is thus known if $\mathcal{F} = \mathbb{R}^d$ and $\mathcal{U} = \emptyset$.
 - ▶ When only marginals are known: $\mathcal{U} = \mathbb{R}^d$ and $\mathcal{F} = \emptyset$.
 - ▶ Our Goal: Find bounds on $\rho(S) := \rho(X_1 + ... + X_d)$ when $(X_1,...,X_d)$ satisfy (i), (ii) and (iii).

Our assumptions on the cdf of $(X_1, X_2, ..., X_d)$

 $\mathcal{F} \subset \mathbb{R}^d$ ("trusted" or "fixed" area) $\mathcal{U} = \mathbb{R}^d \setminus \mathcal{F}$ ("untrusted").

We assume that we know:

- (i) the marginal distribution F_i of X_i on \mathbb{R} for i=1,2,...,d,
- (ii) the distribution of $(X_1, X_2, ..., X_d) \mid \{(X_1, X_2, ..., X_d) \in \mathcal{F}\}.$
- (iii) $P((X_1, X_2, ..., X_d) \in \mathcal{F})$
 - ightharpoonup joint distribution of $(X_1, X_2, ..., X_d)$ is thus known if $\mathcal{F} = \mathbb{R}^d$ and $\mathcal{U} = \emptyset$.
 - ▶ When only marginals are known: $\mathcal{U} = \mathbb{R}^d$ and $\mathcal{F} = \emptyset$.
 - ▶ Our Goal: Find bounds on $\rho(S) := \rho(X_1 + ... + X_d)$ when $(X_1,...,X_d)$ satisfy (i), (ii) and (iii).

2 methods: **non-parametric approach** or Monte-Carlo simulation from theoretical bounds.

First Approach

Approximation of Bounds

(for variance and TVaR)

Example:

N=8 observations, d=3 dimensions and 3 observations trusted ($\ell_f=3$, $p_f=3/8$)

$$\begin{bmatrix} 3 & 4 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \\ 4 & 2 & 3 \\ \end{bmatrix}$$

$$S_N = egin{bmatrix} 8 \ 3 \ 5 \ 3 \ 8 \ 4 \ 4 \ 0 \end{bmatrix}$$

- The matrix M is split into two parts: \mathcal{F}_N : trusted observations, \mathcal{U}_N : "untrusted" part.
- Rearranging the values x_{ik} (i = 1, 2, ..., N) within the k-th column does not affect the marginal distribution X_k but only changes the observed dependence.
- ullet ℓ_f : number of elements in \mathcal{F}_N , ℓ_u : number of elements in \mathcal{U}_N

$$N = \ell_f + \ell_u$$
.

- M has ℓ_f grey rows and ℓ_u white rows.
- S_N^f and S_N^u consist of sums in \mathcal{F}_N and \mathcal{U}_N .

Example: N=8, d=3 with 3 observations trusted ($\ell_f=3$)

$$\begin{bmatrix} 3 & 4 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 4 & 3 & 3 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \end{bmatrix}, \quad S_N^u = \begin{bmatrix} 10 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$

Carole Bernard

Maximum variance (or maximum TVaR)

upper Fréchet bound, comonotonic scenario

- To maximize the variance of S_N : comonotonic scenario on \mathcal{U}_N , and the corresponding values of the sums \tilde{s}_i $(i=1,2,...,\ell_u)$
- Average sum $\bar{s} = 5.5$.
- Maximum variance

$$\frac{1}{8} \left(\sum_{i=1}^{3} (s_i - \bar{s})^2 + \sum_{i=1}^{5} (\tilde{s}_i^c - \bar{s})^2 \right) \approx 8.75$$

Minimum variance (or minimum TVaR)

Antimonotonicity in *d* dimensions? The rearrangement algorithm (RA) of Puccetti & Rüschendorf, 2012 aims to obtain sums with variance as small as possible.

Idea of the RA

► Columns of *M* are rearranged such that they become anti-monotonic with the sum of all other columns.

$$\forall k \in \{1, 2, ..., d\}, X_k^a$$
 antimonotonic with $\sum_{j \neq k} X_j$

▶ After each step, $var\left(X_k^a + \sum_{j \neq k} X_j\right) \leqslant var\left(X_k + \sum_{j \neq k} X_j\right)$ where X_k^a is antimonotonic with $\sum_{j \neq k} X_j$

Example: Minimum Variance

$$M = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 4 & 2 \\ 0 & 2 & 1 \\ 4 & 3 & 3 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad S_N^f = \begin{bmatrix} 8 \\ 8 \\ 3 \end{bmatrix}, \quad S_N^u = \begin{bmatrix} 10 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$

Minimum variance obtained when S_N^u has smallest variance (ideally constant, "mixability")

$$M = \left[egin{array}{cccc} 3 & 4 & 1 \ 2 & 4 & 2 \ 0 & 2 & 1 \ 1 & 1 & 3 \ 0 & 3 & 2 \ 1 & 2 & 2 \ 3 & 1 & 1 \ 4 & 0 & 1 \ \end{array}
ight], \quad S_N^f = \left[egin{array}{c} 8 \ 8 \ 3 \ \end{array}
ight], \quad S_N^u = \left[egin{array}{c} 5 \ 5 \ 5 \ 5 \ 5 \ \end{array}
ight]$$

The minimum variance is

$$\frac{1}{8} \left(\sum_{i=1}^{3} (s_i - \bar{s})^2 + \sum_{i=1}^{5} (\tilde{s}_i^m - \bar{s})^2 \right) \approx 2.5$$

Example d = 20

 \triangleright $(X_1,...,X_{20})$ independent multivariate normal on

$$\mathcal{F} := [q_{\beta}, q_{1-\beta}]^d \subset \mathbb{R}^d$$

(for some $\beta \leq 50\%$) where q_{γ} : γ -quantile of N(0,1)

- $\beta = 0\%$: no uncertainty (multivariate assumption)
- $ightharpoonup \beta = 50\%$: full uncertainty

	$\mathcal{U} = \emptyset$	$p_f \approx 98\%$	$p_f \approx 82\%$	$\mathcal{U} = \mathbb{R}^d$
$\mathcal{F} = [q_eta, q_{1-eta}]^d$	$\beta = 0\%$	$\beta = 0.05\%$	$\beta = 0.5\%$	$\beta = 50\%$
$\rho = 0$	4.47	(4.4, 5.65)	(3.89, 10.6)	(0, 20)

Bounds on Value-at-Risk

Previous approach works for all risk measures that satisfy convex order... But not for Value-at-Risk

▶ to maximize VaR_p , the idea is to change the comonotonic dependence of Z_i such that the sum is constant in the tail

Numerical Results, 20 independent N(0,1), $\mathcal{F} = [q_{\beta}, q_{1-\beta}]^d$

	$\mathcal{U} = \emptyset$	$p_f \approx 98\%$	$p_f \approx 82\%$	$\mathcal{U}=\mathbb{R}^d$
	$\beta = 0\%$	$\beta = 0.05\%$	$\beta = 0.5\%$	$\beta = 0.5$
p=95%	12.5	(12.2, 13.3)	(10.7 , 27.7)	(-2.17, 41.3)
p=99.95%	25.1	(24.2,71.1)	(21.5,71.1)	(-0.035, 71.1)

- $\mathcal{U} = \emptyset$: No uncertainty (multivariate standard normal model).
- ▶ The risk for an underestimation of VaR is increasing in the probability level used to assess the VaR.
- For VaR at high probability levels (p = 99.95%), despite all the added information on dependence, the bounds are still wide!

Conclusions

- Assess model risk with partial information and given marginals (Monte Carlo from fitted model or non-parametrically)
- Algorithm for variance, TVaR and VaR
- ► Application to the model risk of a portfolio of stocks with market data
- ▶ How to choose the trusted area \mathcal{F} optimally?
- N too small: possible to improve the efficiency of the algorithm by re-discretizing using the fitted marginal \hat{f}_i .
- ▶ Possible to amplify the tails of the marginals by re-discretizing with a probability distortion
- ▶ Additional information on dependence can be incorporated
 - variance of the sum (WP with Rüschendorf, Vanduffel)
 - higher moments (WP with Denuit, Vanduffel)

References

- ▶ Bernard, C., X. Jiang, and R. Wang (2014): "Risk Aggregation with Dependence Uncertainty," *Insurance: Mathematics and Economics*.
- Bernard, C., Y. Liu, N. MacGillivray, and J. Zhang (2013): "Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence," *Dependence Modelling*.
- Bernard, C., L. Rüschendorf, and S. Vanduffel (2013): "VaR Bounds with a Variance Constraint," Working Paper.
- Embrechts, P., G. Puccetti, and L. Rüschendorf (2013): "Model uncertainty and VaR aggregation," Journal of Banking & Finance.
- Puccetti, G., and L. Rüschendorf (2012): "Computation of sharp bounds on the distribution of a function of dependent risks," *Journal of Computational and Applied Mathematics*, 236(7), 1833–1840.
- ▶ Wang, B., and R. Wang (2011): "The complete mixability and convex minimization problems with monotone marginal densities," *Journal of Multivariate Analysis*, 102(10), 1344–1360.
- ▶ Wang, B., and R. Wang (2014): "Joint Mixability," Working paper.

Second Approach

Model Risk Analytical Bounds

Conclusions

Some Notation

• Define $p_f := P(\mathbb{I} = 1)$ and $p_{ij} := P(\mathbb{I} = 0)$ where

$$\mathbb{I} := \mathbb{1}_{(X_1, X_2, \dots, X_d) \in \mathcal{F}} \tag{2}$$

- Let $U \sim \mathcal{U}(0,1)$ independent of the event " $(X_1, X_2, ..., X_d) \in \mathcal{F}$ " (so U is independent of \mathbb{I}).
- Define (Z₁, Z₂, ..., Z_d) by

$$Z_i = F_{X_i|(X_1, X_2, ..., X_d) \in \mathcal{U}}^{-1}(U), \qquad i = 1, 2, ..., d$$
 (3)

• All Z_i (i = 1, 2, ..., d) are increasing in U and thus $(Z_1, Z_2, ..., Z_d)$ is comonotonic with known distribution.

Bounds on Variance

Theorem (Bounds on the variance of $\sum_{i=1}^{d} X_i$)

Let $(X_1, X_2, ..., X_d)$ that satisfies properties (i), (ii) and (iii) and let $(Z_1, Z_2, ..., Z_d)$ and \mathbb{I} as defined before.

$$var\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}E(Z_{i})\right)\leqslant var\left(\sum_{i=1}^{d}X_{i}\right)$$

$$\leqslant var\left(\mathbb{I}\sum_{i=1}^{d}X_{i}+(1-\mathbb{I})\sum_{i=1}^{d}Z_{i}\right)$$

Bounds on VaR

Theorem (Constrained VaR Bounds for $\sum_{i=1}^{d} X_i$)

Assume $(X_1, X_2, ..., X_d)$ satisfies properties (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$, U and \mathbb{I} as defined before. Define the variables L_i and H_i as

$$L_{i} = LTVaR_{U}(Z_{i})$$
 and $H_{i} = TVaR_{U}(Z_{i})$

and let

$$m_p := VaR_p \left(\mathbb{I} \sum_{i=1}^d X_i + (1 - \mathbb{I}) \sum_{i=1}^d L_i \right)$$

 $M_p := VaR_p \left(\mathbb{I} \sum_{i=1}^d X_i + (1 - \mathbb{I}) \sum_{i=1}^d H_i \right)$

Bounds on the Value-at-Risk are $m_p \leqslant VaR_p\left(\sum_{i=1}^d X_i\right) \leqslant M_p$.

Value-at-Risk of a Mixture

Lemma

Consider a sum $S = \mathbb{I}X + (1 - \mathbb{I})Y$, where \mathbb{I} is a Bernoulli distributed random variable with parameter p_f and where the components X and Y are independent of \mathbb{I} . Define $\alpha_* \in [0,1]$ by

$$lpha_* := \inf \left\{ lpha \in (0,1) \mid \exists eta \in (0,1) \left\{ egin{array}{l} p_f lpha + (1-p_f)eta = p \ VaR_lpha(X) \geqslant VaR_eta(Y) \end{array}
ight\}$$
 and let $eta_* = rac{p-p_f lpha_*}{1-p_f} \in [0,1].$ Then, for $p \in (0,1)$, $VaR_p(S) = \max \left\{ VaR_{lpha_*}(X), VaR_{eta_*}(Y) \right\}$

Applying this lemma, one can prove a more convenient expression to compute the VaR bounds.

Let us define $T := F_{\sum_i X_i | (X_1, X_2, \dots, X_d) \in \mathcal{F}}^{-1}(U)$.

Theorem (Alternative formulation of the upper bound for VaR)

Assume $(X_1, X_2, ..., X_d)$ satisfies properties (i), (ii) and (iii), and let $(Z_1, Z_2, ..., Z_d)$ and \mathbb{I} as defined before.

With
$$\alpha_1 = \max\left\{0, \frac{p+p_f-1}{p_f}\right\}$$
 and $\alpha_2 = \min\left\{1, \frac{p}{p_f}\right\}$, $\alpha_* := \inf\left\{\alpha \in (\alpha_1, \alpha_2) \mid VaR_{\alpha}(T) \geqslant TVaR_{\frac{p-p_f\alpha}{1-p_f}}\left(\sum_{i=1}^d Z_i\right)\right\}$ When $\frac{p+p_f-1}{p_f} < \alpha_* < \frac{p}{p_f}$,

$$M_p = TVaR_{\frac{p-p_f\alpha_*}{1-p_f}} \left(\sum_{i=1}^d Z_i \right)$$

The lower bound m_p is obtained by replacing "TVaR" by "LTVaR".