A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard (University of Waterloo)
& Steven Vanduffel (Vrije Universiteit Brussel)

University of

Waterloo WATRISQ

Samos, May 2014.

Carole Bernard Assessing Model Risk in High Dimensions 1



Introduction Model Risk First Approach lllustration Value-at-Risk Conclusions

Objectives and Findings

e Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of the portfolio?

e A non-parametric method based on the data at hand.

e Analytical expressions for these maximum and minimum
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Objectives and Findings

Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d individual dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of the portfolio?

e A non-parametric method based on the data at hand.

Analytical expressions for these maximum and minimum

Implications:
» Current regulation is subject to very high model risk, even if
one knows the multivariate distribution almost completely.
» Able to quantify model risk for a chosen risk measure. We can
identify for which risk measures it is meaningful to develop
accurate multivariate models.
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Model Risk

© Goal: Assess the risk of a portfolio sum S = 27:1 Xi.

@ Choose a risk measure p(-), “fit" a multivariate distribution
for (X1, X2, ..., X4) and compute p(S)

© How about model risk? How wrong can we be?

e (5] (o[

where the supremum and the infimum are taken over all other
(joint distributions of) random vectors (X1, X2, ..., X4) that
“agree” with the available information
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Choice of the risk measure

e Variance of X
e Value-at-Risk of X at level p € (0,1)
VaR, (X) = Fyl(p) =inf{x e R| Fx(x) = p} (1)

e Tail Value-at-Risk or Expected Shortfall of X

1 1
TVaRP(X) = ﬂ VaRu(X)dU p € (0, ].)
p

and p — TVaR, is continuous.
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Assessing Model Risk on Dependence with d Risks

» Marginals known
» Dependence unknown
» Already a challenging problem in d > 3 dimensions

e Wang and Wang (2011, JMVA)
e Embrechts, Puccetti, Riischendorf (2013, JBF): algorithm
(RA) to find bounds on VaR
» Issues

e bounds are generally very wide
e ignore all information on dependence.
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Carole Bernard

lllustration with marginals N(0,1)
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lllustration with marginals N(0,1)

F1= ﬂ {9 < Xk < q1-5}
k=1

Conclusions
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Our assumptions on the cdf of (X1, X2, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, Xa, ..., Xq) | {(X1, Xo, ..., X4) € F}.
(i) P ((X1, Xa, ..., Xg) € F)

» joint distribution of (X1, X2, ..., Xg4) is thus known if F =R9
and U = 0.

» When only marginals are known: &/ = R and F = (.

» Our Goal: Find bounds on p(S) := p(Xi1 + ... + X4) when
(X1, ..., Xg) satisfy (i), (ii) and (iii).
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Our assumptions on the cdf of (X1, X2, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, Xa, ..., Xq) | {(X1, Xo, ..., X4) € F}.
(i) P ((X1, Xa, ..., Xg) € F)

» joint distribution of (X1, X2, ..., Xg4) is thus known if F =R9
and U = 0.
» When only marginals are known: &/ = R and F = (.
» Our Goal: Find bounds on p(S) := p(Xi1 + ... + X4) when
(X1, ..., Xy) satisfy (i), (ii) and (iii).
2 methods: non-parametric approach or Monte-Carlo simulation
from theoretical bounds.
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First Approach

Approximation of Bounds

(for variance and TVaR)

Carole Bernard
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Example:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (¢/f = 3, pr = 3/8)

SN =

=W OO -~ W
N = OB DN WK
W NN ==
O B~ 00 W UL W o
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The matrix M is split into two parts: Fy : trusted
observations, Uy : “untrusted” part.

Rearranging the values xj (i = 1,2, ..., N) within the k—th
column does not affect the marginal distribution X, but only
changes the observed dependence.

£¢ : number of elements in Fp, £, : number of elements in Uy
N=1Vr+1,.

M has ¢ grey rows and £, white rows.

S,(, and Sy consist of sums in Fjy and Uy .
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Example: N =8, d =3 with 3 observations trusted (¢ = 3)

Sy =

T 1
WO O =W
SISO U SRS

W N = DN~ DN ==
L 1
r 1

© = &= 00 W Ut W o
L |

O R =W O N W
O =N W DN
— = NN W~ R
—_
(e
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Maximum variance (or maximum TVaR)

upper Fréchet bound, comonotonic scenario

e To maximize the variance of Spy: comonotonic scenario on Uy,
and the corresponding values of the sums §; (i =1,2,...,¢,)

e Average sum 5 = 5.5.

e Maximum variance

3 5

% > (si—3)P2+> (55 —3)?°) =875
i=1

i=1
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Minimum variance (or minimum TVaR)

Antimonotonicity in d dimensions?
The rearrangement algorithm (RA) of Puccetti & Riischendorf,
2012 aims to obtain sums with variance as small as possible.

Idea of the RA

» Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns.

Vk € {1,2,...,d}, X? antimonotonic with ij
J#k

» After each step, var (X,f + D ik XJ) < var (Xk + Dk XJ)
where X7 is antimonotonic with Z#ka
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Example: Minimum Variance

OHHWArONW
OR N WNA K
R EFNNWRN-
n
2%
I
—
W 00 00
[—
0
P43
I
-
A

Minimum variance obtained when Sy has smallest variance (ideally
constant, “mixability”)

3 4 1
2 4 2

5

T s 8 5

M= |4 5 5 |- sl—=| 8|, s%x=1|>5

3 5

1 2 2 o

3 1 1 2
4 0 1

The minimum variance is
3
§(Zls - 97+ LG - 5)?) ~ 25
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Example d = 20

» (Xi,..., Xo0) independent multivariate normal on
Fo= [qﬁv ql—ﬁ]d - Rd

(for some 3 < 50%) where g,: y-quantile of N(0,1)
» (3 = 0%: no uncertainty (multivariate assumption)
» (3 =50%: full uncertainty

U=0 | pr~98% pr ~ 82% U =R9
F=lgq1-p] | 6=0% | B=005% | B=05% | B=50%
p=0 4.47 | (44 ,565) | (3.89,10.6) | (0, 20)
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Bounds on Value-at-Risk

Previous approach works for all risk measures that satisfy convex
order... But not for Value-at-Risk

» to maximize VaR,, the idea is to change the comonotonic
dependence of Z; such that the sum is constant in the tail
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Numerical Results, 20 independent N(0,1), F = [gs,q1_5]?

U=10 pr ~ 98% pr ~ 82% U =R
B=0%| p=0.05% 8 =05% =05
p=95% | 125 | (122,133) | (10.7,27.7) | (-2.17,413)

p=99.95% [ 25.1 [ (242,71.1)[(215,71.1)[(-0.035,6711) |

o U =0 : No uncertainty (multivariate standard normal model).

» The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

» For VaR at high probability levels (p = 99.95%), despite all
the added information on dependence, the bounds are
still wide!

Carole Bernard Assessing Model Risk in High Dimensions 22



Introduction

Model Risk First Approach lllustration Value-at-Risk Conclusions
Conclusions

Assess model risk with partial information and given marginals
(Monte Carlo from fitted model or non-parametrically)
Algorithm for variance, TVaR and VaR

Application to the model risk of a portfolio of stocks with
market data

How to choose the trusted area F optimally?

N too small: possible to improve the efficiency of theA
algorithm by re-discretizing using the fitted marginal f;.
Possible to amplify the tails of the marginals by re-discretizing
with a probability distortion

Additional information on dependence can be incorporated

- variance of the sum (WP with Riischendorf,Vanduffel)
- higher moments (WP with Denuit, Vanduffel)
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Second Approach

Model Risk Analytical Bounds
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Some Notation

Define pr := P(I=1) and p, := P(I = 0) where

[:=1(x x,..Xs)eF (2)

Let U ~ U(0,1) independent of the event
“(X1, X2, ..., Xq) € F" (so U is independent of I).

Define (241, 22, ..., Z4) by

Zi=Fy}

X,-|(X1,X2,...,Xd)el/l(U)’ I == 1,2,...,d (3)

All Z; (i=1,2,...,d) are increasing in U and thus
(Z1, 2o, ..., Z4) is comonotonic with known distribution.
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Bounds on Variance

Theorem (Bounds on the variance of Z;j:l Xi)

Let (X1, Xa, ..., Xy) that satisfies properties (i), (ii) and (iii) and let
(21,22, ...,Z4) and 1 as defined before.

d d d
var <]IZ Xi+(1-0)> E(Z,-)) < var <Z X,->
i=1 i=1 ., i=1 .
< var <]IZX,' +(1- H)ZZ)

i=1 i=1
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Bounds on VaR

Theorem (Constrained VaR Bounds for Zfl:l Xi)

Assume (X1, Xa, ..., Xy) satisfies properties (i), (ii) and (iii), and let
(Z1,22,...,Z4), U and 1 as defined before. Define the variables L;
and H; as

L,' = LTVaRU (Z,) and H,' = TVaRU (Z,)
and let

mp = VaRp (]1 27:1 Xi aF (1 — ]I) Z?:l L’)
S = e

Bounds on the Value-at-Risk are m, < VaR, (Z;j:l X,-) < M,
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Value-at-Risk of a Mixture

Lemma

Consider a sum S =1X+ (1 —1)Y, where I is a Bernoulli
distributed random variable with parameter ps and where the
components X and Y are independent of I. Define «, € [0,1] by

s {acy 3e0n { S0 om=e )

and let B, = ETP2= € [0,1]. Then, for p € (0,1),

VaR,(S) = max{VaR,,(X), VaRs, (Y)}

Applying this lemma, one can prove a more convenient expression
to compute the VaR bounds.
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Let us define T := FZ,—X,-|(X1,X2,...,Xd)ef(U)'

Theorem (Alternative formulation of the upper bound for VaR)

Assume (X1, Xa, ..., X4) satisfies properties (i), (ii) and (iii), and let
(Z1, 2>, ..., Zq) and 1 as defined before.

With oy = max{O, p+57:—1} and ci; = min {1, %},

a, = infSa € (ar,a2) | VaRy(T) = TVaRp—pa <Zd 1 Zi)}

1=
1—pf
—1
When PPl P
pr < < pr’

d
Mp = TVaRp—prax (Z Z,-)

e \iot

The lower bound m,, is obtained by replacing “TVaR" by “LTVaR".
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