Sums and extremes

8th Conference in Actuarial Science and Finance, Samos, May 29- June 1,2014

Michel Broniatowski
Université Paris 6, France
$$
\text { June 1, } 2014
$$

Contents

Direct methods

(1) Fixed sample size asymptotics, robustness and loyalty
(2) Asymptotics
(1) Light tails

- all summands are large when the mean is large
- Erdös-Rényi laws
- High order statistics and high level aggregates
(2) Heavy tails, conditional independence of the maximum w.r.t. the summands

Integral methods

(1) Heavy tails

- A short proof of a theorem of Gnedenko, Karamata Tauberian Theorem
(2) Light tails
- An Abelian result for the moment generating function
- Gibbs conditional result under extreme deviation

FIXED SAMPLE SIZE ASYMPTOTICS

X_{1}, X_{2} independent standard Cauchy. Where is $\left(X_{1}, X_{2}\right)$ when $S_{1}^{2}:=X_{1}+X_{2}>2 t$ for large t ?

$$
\begin{aligned}
& P\left(X_{1}>t \epsilon, X_{2}>t \epsilon \mid S_{1}^{2}>2 t\right) \\
& \leq \frac{P\left(X_{1}>t \epsilon\right) P\left(X_{2}>t \epsilon\right)}{P\left(\epsilon S_{1}^{2}>2 t\right)} \\
& \propto \frac{t}{(t \epsilon)^{2}} \rightarrow 0
\end{aligned}
$$

for all $\epsilon>0$ as $t \rightarrow \infty$.
Only one of the $X_{i}^{\prime} \mathrm{s}$ is large. $(1,0) \in \operatorname{span}\left(e_{1}\right),(0,1) \in \operatorname{span}\left(e_{2}\right)$.
X_{1}, X_{2} independent standard $N(0,1)$. Set

$$
\begin{aligned}
U & :=\frac{X_{1}+X_{2}}{2} \\
V & :=\frac{X_{1}-x_{2}}{2}
\end{aligned}
$$

independent gaussian centered.

$$
\mathcal{L}\left(\left.\left(\frac{X_{1}}{t}, \frac{X_{2}}{t}\right) \right\rvert\, S_{1}^{2}>2 t\right)=\mathcal{L}\left(\left.\left(\frac{U}{t}, \frac{U}{t}\right)+\left(\frac{V}{t}, \frac{-V}{t}\right) \right\rvert\, S_{1}^{2}>2 t\right)
$$

Now $U \perp V$ hence

$$
\left(\frac{V}{t}, \frac{-V}{t}\right) \rightarrow(0,0)
$$

U Gaussian hence $\left(\frac{U}{t}, \frac{U}{t}\right) \rightarrow(1,1)$ conditionally on $(U>t)$.
Hence

$$
\mathcal{L}\left(\left.\left(\frac{X_{1}}{t}, \frac{X_{2}}{t}\right) \right\rvert\, S_{1}^{2}>2 t\right) \rightarrow \delta_{(1,1)}
$$

as $t \rightarrow \infty . \quad(1,1) \in \operatorname{span}\left(e_{1}, e_{2}\right)$
X_{1}, X_{2} independent standard exponential.

$$
\mathcal{L}\left(\left(X_{1}, X_{2}\right) \mid S_{1}^{2}=s\right) \text { uniform on }\left(x_{1}+x_{2}=s\right), x_{1,2}>0
$$

Hence P (at least one of the X_{i} / s is less than $\left.\epsilon \mid S_{1}^{2}=s\right)$ is twice the normalized distance of the segment from the boundary to $(\epsilon, s-\epsilon)$, hence small for small ϵ (indeed $2 \epsilon / s$).
Integrate to get that

$$
\mathcal{L}\left(\text { at least one of the } X_{i} / t \text { is less than } \epsilon \mid S_{1}^{2}>2 t\right)
$$

is small for small ϵ. Although the limit distribution
$\mathcal{L}\left(\left(X_{1} / t, X_{2} / t\right) \mid S_{1}^{2}>2 t\right)$ is not a point mass, all terms ars large when the mean is large.
The segment $[(1,0),(0,1)] \in \operatorname{span}\left(e_{1}, e_{2}\right)$.

LOYAL ESTIMATORS

Assumptions

$$
T_{n}:=T\left(X_{1}, . ., X_{n}\right) \in \mathbb{R}
$$

The upper point of the distribution of T_{n} is unbounded There exists $t \rightarrow a(t)$ such that $\mathcal{L}\left(X_{1}^{n} / a(t) \mid T_{n}>t\right) \Longrightarrow \Pi$ and Π not concentrated at 0 .

$$
e_{1}, . ., e_{n} \text { the canonical basis of } \mathbb{R}^{n} \text {. }
$$

Π is concentrated on $\left\{x \in \mathbb{R}^{n}: x_{i_{1}}=0, . ., x_{i_{k}}=0\right\}$ iff $X_{1}^{n} / a(t)$ converges to a r.v Y with $Y_{i_{1}}=0, . ., Y_{i_{k}}=0$, i.e. $\operatorname{supp} \Pi \subset \operatorname{span}\left\{e_{j}, j \notin e_{i_{1}}, \ldots, e_{i_{k}}\right\}$.
Consider

$$
\inf \left\{n-k: \operatorname{supp} \Pi \subset \bigcup \operatorname{span}\left(e_{i_{1}}, . ., e_{i_{n-k}}\right)\right\}
$$

where the union is over all $i_{1}, . . i_{n-k}$ included in $(1, . ., n)$.
Then T_{n} blows when at least $L=n-k$ of the X_{i} 's blow.

Definition

$$
B N\left(P_{n}, T_{n}\right):=\inf \left\{j: \operatorname{supp} \Pi \subset \bigcup \operatorname{span}\left(e_{i_{1}}, . ., e_{i_{j}}\right)\right\}
$$

The estimator T_{n} is loyal when $B N\left(P_{n}, T_{n}\right)$ s high. (depends on the sampling scheme)

Definition

(Merriam-Webster) LOYAL: Faithful to the lawful government or to the sovereign to whom one is subject: unswerving in allegiance.

An estimator is loyal under a given probability law will take large value only if a vast majority of the sample will force it to.

$$
\begin{aligned}
B N\left(\text { Cauchy, } S_{1}^{n} / n\right) & =1 \\
B N\left(N(0,1), S_{1}^{n} / n\right) & =n \\
B N\left(\operatorname{Exp}(1), S_{1}^{n} / n\right) & =n
\end{aligned}
$$

Applications

Homogeneous statistics

$$
T\left(\lambda X_{1}, . ., \lambda X_{n}\right)=\lambda^{\alpha} T\left(X_{1}, . ., X_{n}\right)
$$

$\alpha=1$: L-estimators, $\alpha=2$: variance. More generally U statistics with homogeneous kernel, some M estimators, etc

$$
\begin{gathered}
w_{\beta}(u)=c_{\beta} \exp \left(-|u|^{\beta}\right) \quad u \in \mathbb{R}, \beta>0 \\
p_{\beta}(u)=(\beta+1)^{-1} u^{-\beta}, u \in(1, \infty), \beta>1
\end{gathered}
$$

Weibull type tails

Theorem

Let T_{n} be a homogeneous statistics. Assume that

$$
\left(v_{1}, \ldots, v_{n}\right) \rightarrow \sum_{i=1}^{n}\left|v_{i}\right|^{\beta}
$$

is minimum at a unique essential point p on the set $\left\{T_{n} \geq 1\right\}$. Then the blowing number of T_{n} for the i.i.d. sampling is the number of non-zero coordinates of p.

Example

$T_{n}=$ empirical mean, Blowing number $=n$ when $\beta>1$,Blowing number $=1$ when $\beta<1$.

Example

$T_{n}=$ empirical variance, Blowing number $=n$ when $\beta>1$, Blowing
number $=1$ when $\beta<1$

Pareto tails

Theorem

If T_{n} is a homogeneous with

$$
\begin{aligned}
& T_{n}\left(x_{1}, . ., x_{n}\right) \leq \max \left(x_{1}, . ., x_{n}\right) \\
& T_{n}\left(x_{1}, . ., x_{n}\right) \leq \theta\left(x+. .+x_{n}\right) \text { for some } \theta>0
\end{aligned}
$$

then $\mathcal{L}\left(\left(X_{1} / t, . ., X_{n} / t\right) \mid T_{n}>t\right)$ is tight as $t \rightarrow \infty$ under i.i.d sampling. Any limiting distribution is concentrated on a union of 1-dimensional canonical subspaces. Hence the blowing number is 1 .

See Barbe and B (2004), To be compared with breakdown point; Jureckova and Sen (1996), Kusnier and Mizera (1999), etc.

LIMIT RESULTS UNDER EXCEEDANCES

LIGHT TAILS

$$
X_{1}^{n}:=\left(X_{1}, . ., X_{n}\right)
$$

i.i.d.

Assume that for any fixed n it holds

$$
\lim _{a \rightarrow \infty} P\left(X_{1}^{n} \in a B_{n} \mid S_{1}^{n} \geq n a\right)=0
$$

for any Borel set B_{n} in \mathbb{R}^{n} such that $(1, . ., 1) \notin B_{n}$.
Fix such a sequence B_{n} and define a_{n} such that for any $s>a_{n}$

$$
\sup _{s>a_{n}} P\left(X_{1}^{n} \in s B_{n} \mid S_{1}^{n} \geq n s\right) \leq 1 / n
$$

QUESTION

For which classes of distributions and for which order of magnitude of the conditioning barrier a_{n} do we have

$$
\lim _{n \rightarrow \infty} P\left(\cap X_{i} \in\left(a_{n}-\varepsilon_{n}, a_{n}+\varepsilon_{n}\right) \mid S_{1}^{n} \geq n a_{n}\right)=1
$$

with

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

and

$$
\lim _{n \rightarrow \infty} \varepsilon_{n} / a_{n}=0
$$

Can we have

$$
\lim _{n \rightarrow \infty} \varepsilon_{n}=0
$$

and, if yes, at which rate?

Such questions are also of interest in many branches of physics; see D Sornette (2004) which handles the notion of so-called "democratic localization" of a sample,(fixed $n, a \rightarrow \infty)$. The definition of the "democratic localization" property is :"the extreme tail behaviour of the sum X of N random variables comes mostly from contributions where the individual variables in the sum are all close to $X / N^{\prime \prime}$ The precise phrasing amounts to assume that the common density of the independent summands is of the form $\exp (-f(x))$ where f satisfies $f^{\prime \prime}>0$ together with $x^{2} f^{\prime \prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$, and the density of the sum is of the form $\exp (-f(x / N))$. Applications in fragmentation processes and in turbulence, among others.

NOTATION, HYPOTHESES

Denote

$$
C_{n}:=\left(S_{1}^{n} / n>a_{n}\right)
$$

and

$$
I_{n}:=\cap_{i=1}^{n}\left(X_{i} \in\left(a_{n}-\epsilon_{n}, a_{n}+\epsilon_{n}\right)\right) .
$$

The real valued random variables X_{1}, \ldots, X_{n} are independent copies of a r.v. X with density f whose support is \mathbb{R}^{+}. We write

$$
f(x):=c \exp (-d(x))
$$

Density functions of the form $f(x)=c \exp (-d(x))$ whose exponent functions d are nearly convex functions.
The i.i.d random variables X_{1}, \ldots, X_{n} have common density f with

$$
f(x)=c \exp (-(g(x)+q(x)))
$$

$g(x)$ is a positive convex differentiable function which satisfies

$$
\lim _{x \rightarrow \infty} g(x) / x=\infty
$$

Let $M(x)$ be some nonnegative continuous function on \mathbb{R}^{+}for which

$$
-M(x) \leq q(x) \leq M(x) \quad \text { for all positive } x
$$

together with

$$
\begin{equation*}
M(x)=O(\log g(x)) \tag{1}
\end{equation*}
$$

Recall

$$
C_{n}:=\left(S_{1}^{n} / n>a_{n}\right)
$$

and

$$
I_{n}:=\cap_{i=1}^{n}\left(X_{i} \in\left(a_{n}-\epsilon_{n}, a_{n}+\epsilon_{n}\right)\right) .
$$

Theorem

Let a_{n} satisfy

$$
\lim _{\inf _{n \rightarrow \infty}} \frac{\log g\left(a_{n}\right)}{\log n}>0
$$

then with some control on ϵ_{n}

$$
\lim _{n \rightarrow \infty} P\left(I_{n} \mid C_{n}\right)=1
$$

Example

Let $g(x):=x^{\beta}$.

$$
\lim _{n \rightarrow \infty} \frac{n \log a_{n}}{a_{n}^{\beta-2} \epsilon_{n}^{2}}=0
$$

Case 1: $1<\beta \leq 2$.
Take $a_{n}=n^{\alpha}$ with $a_{n}>1 / \alpha$, we need ϵ_{n} be large enough

$$
\epsilon_{n} \gg a_{n}^{1-\frac{\beta}{2}} \sqrt{n \log a_{n}}
$$

which shows that $\epsilon_{n} \rightarrow \infty$ and $\epsilon_{n} / a_{n} \rightarrow 0$ possible.
Case 2: $\beta>2$. $a_{n}=n^{\alpha}$ with $\alpha>1 /(\beta-2)$, arbitrary sequences ϵ_{n} bounded by below away from 0 . The sequence ϵ_{n} may also tend to 0 ; indeed $\epsilon_{n}=O\left(1 / \log a_{n}\right)$ fits.
Let $g(x):=e^{x}$. Set $a_{n}:=n^{\alpha}$ where $\alpha>0$ and ϵ_{n} is rapidly decreasing to 0 ; indeed we may choose $\epsilon_{n}=o\left(\exp \left(-a_{n} / 4\right)\right)$ together with $\epsilon_{n} / \sqrt{n a_{n} e^{-a_{n}}} \rightarrow \infty$.

Example

Almost Log-concave densities 1: f can be written as

$$
f(x)=c(x) \exp (-g(x)), \quad 0<x<\infty
$$

with g a twice differentiable convex function with $\lim _{x \rightarrow \infty} g(x) / x=\infty$ and for some $x_{0}>0$ and constants $0<c_{1}<c_{2}<\infty$,

$$
c_{1}<c(x)<c_{2} \quad \text { for } \quad x_{0}<x<\infty
$$

Examples of densities which satisfy the above conditions include the Normal, the hyperbolic density, etc.
Almost Log-concave densities 2: when there exist constants $x_{0}>0$, $\alpha>0$, and A such that

$$
f(x)=A x^{\alpha-1} I(x) \exp (-g(x)) \quad x>x_{0}
$$

where $I(x)$ is slowly varying at infinity.

Erdös-Rényi laws for small increments

Consider a long run X_{1}, \ldots, X_{N} of i.i.d. r.v's and let F be the c.d.f of X_{1} which is assumed to satisfy the light tail conditions.

$$
J(x):=\sup _{t} t x-\log E\left(\exp \left(t X_{1}\right)\right)
$$

the Legendre-Fenchel transform of the m.g.f. $t \rightarrow \log E\left(\exp \left(t X_{1}\right)\right)$. Denote $\gamma(u):=J^{\leftarrow}(u):=x$ such that $J(x)=u$ the asymptotic inverse function of J.
We assume that the function γ is asymptotically equivalent to $u \rightarrow(-\log (1-F))^{\leftarrow}(u)$ in the sense that

$$
\lim _{x \rightarrow \infty} \frac{\gamma(-\log (1-F)(x))}{x}=1
$$

Let $n(N), 1 \leq n(N) \leq N$ be an integer sequence and denote

$$
M(n(N)):=\max _{0 \leq j \leq N-n(N)} S_{j+1}^{j+n(N)}
$$

the maximum of the sums of the X_{i} 's on blocks of size $n(N)$. Set further (small blocks)

$$
c(n(N)):=\frac{\log N}{n(N)} \text { and } \lim _{N \rightarrow \infty} c(n(N))=\infty .
$$

the following result holds

$$
\lim _{N \rightarrow \infty} \frac{M(n(N))}{n(N) \gamma(c(n(N)))}=1 \text { a.s. }
$$

Mason (1989). The function γ behaves like an upper quantile.

Lemma

The behaviour of the function γ for large values of the argument is closely related to the upper quantile function of X_{1}

$$
\gamma(\log x)=(1-F) \leftarrow(1 / x)(1+o(1))
$$

as $x \rightarrow \infty$.
Assume this presently.

Fix some sequence $n(N)$ define for any positive δ close to 0

$$
\begin{equation*}
a_{n(N), \delta}:=(1-\delta) \gamma(c(n(N)))=:(1-\delta) a_{n(N)} . \tag{2}
\end{equation*}
$$

Hence $a_{n(N)}=(1-F) \leftarrow(\exp (-c(n(N)))(1+o(1))$ as N tends to infinity.

$$
\frac{M(n(N))}{n(N)}>a_{n(N), \delta}
$$

hold ultimately with probability 1 meaning that that for large N there exists at least one block of consecutive X_{i} 's with length $n(N)$ whose empirical mean exceeds $a_{n(N), \delta}$. Therefore all the summands in $X_{j+1}, . ., X_{j+n(N)}$ satisfy

$$
\begin{equation*}
\left|\frac{X_{i}}{a_{n(N), \delta}}-1\right| \leq \frac{\epsilon_{n(N), \delta}}{a_{n(N), \delta}} \tag{3}
\end{equation*}
$$

with probability going to 1 as $n \rightarrow \infty$. Since δ is arbitrary, the above property holds with $a_{n(N), \delta}$ substituted by $a_{n(N)}$ and $\epsilon_{n(N)}$ defined accordingly.

We may choose the sequences a_{n} and ϵ_{n} satisfy

$$
\lim _{n \rightarrow \infty} \frac{\epsilon_{n(N)}}{a_{n}(N)}=0
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{X_{i}}{a_{n}(N)}=1
$$

in probability for any i between $j+1$ and $j+n(N)$.

Aggregate forming in the random walk. This phenomenon holds under quite general hypotheses through a discussion on the condition

$$
\gamma(\log x)=(1-F)^{\leftarrow}(1 / x)(1+o(1))
$$

Globally OK if

$$
h(x):=g^{\prime}(x)
$$

is smooth regularly varying.

Height of the aggregate with given length

The case when $-\log (1-F)$ is a regularly varying function With g a regularly varying function with index $k>1$, As an example consider the case when X_{1} has a Weibull distribution on \mathbb{R}^{+}with scale parameter 1 and shape parameter $k>1$.
Define $n(N)$ and $a_{n(N)}$ through

$$
n(N)=(\log N)^{\frac{1}{1+k / \alpha}}
$$

and

$$
a_{n(N)}:=\gamma\left(\frac{\log N}{n(N)}\right)
$$

which entails

$$
a_{n(N)}=(\log N)^{\frac{1}{\alpha+k}}(1+o(1))
$$

Size of the aggregate with a given height

1-Aggregates with high level: Define for $0<\gamma \leq 1$

$$
a_{n(N)}=(\gamma \log N)^{1 / k}
$$

Then $n(N)$ is a constant. The level is of the order of magnitude of the upper quantile of order $N^{-\gamma}$. This result is a limit case since $n(N)$ is bounded; connects with Mason (1989).
2-Aggregates with intermediate level: Define

$$
a_{n(N)}=(\log N)^{\frac{1}{\alpha+k}}
$$

for positive α. Then

$$
n(N)=(\log N)^{\frac{1}{1+k / \alpha}}(1+o(1))
$$

3-Aggregates with low level: Define

$$
a_{n(N)}=(\gamma \log \log N)^{1 / k}
$$

Then

$$
n(N)=\frac{\log N}{\gamma \log \log N}(1+o(1))
$$

which are long aggregates.

Law of large numbers for extreme values and properties of aggregates
The above choice for the values of $n(N)$ and of $a_{n(N)}$ is not incidental. Consider the case when $n(N)=1$; this case is not covered by the the present results; however by Theorem 1 in Mason (1989), Erdös-Rényi law holds, with $a_{1}=\gamma(c(1))$, asymptotically equivalent to the $1 / N$ upper quantile of F. In this case the moving block satisfying (3) shrinks to the maximum $X_{N, N}$ of the X_{i} 's in the sample X_{1}, \ldots, X_{N} for which it is well known that

$$
\frac{X_{N, N}}{a_{1}} \rightarrow 1
$$

a.s. under the current hypotheses. The extension to the case $n(N)=c s t$ holds (Mason (1989) and Barbe and $B(2004)$) for distributions with Weibull type tails, with a_{1} substituted by $a_{c s t}$.

The following Proposition, which extends in a weak sense this classical result of the theory of extreme order statistics to the behaviour of aggregates in the long run holds.

Theorem

Under appropriate regularity conditions then with $a_{n(N)}=\gamma(c(n(N)))$ and $c(n(N)) \rightarrow \infty$

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \min _{0 \leq j \leq N-n(N)}\left(\max _{j \leq i \leq j+n(N)-1} \frac{X_{i}}{a_{n(N)}}\right)=1 \text { in probability. } \tag{4}
\end{equation*}
$$

See B and Cao (2014)

LIMIT RESULTS UNDER HEAVY TAILS

Armendariz and Loulakis (2013)
$S_{1}^{n}=X_{1}+\ldots+X_{n}$ Assume the X_{i} 's i.i.d. with common measure μ subexponential

$$
\begin{aligned}
F(0) & =0 \\
\lim _{n \rightarrow \infty} \frac{P\left(X_{1}+\ldots+X_{n}>x\right)}{n P\left(X_{1}>x\right)} & =1 .
\end{aligned}
$$

Assume μ be Δ - subexponential (Asmussen, Foss, Korshunov, 2003),

$$
\lim _{n \rightarrow \infty} \frac{P\left(X_{1}+\ldots+X_{n} \in x+\Delta\right)}{n \mu(x+\Delta)}=1
$$

and $\Delta:=(O, s)$.
Question :
Study

$$
\mu_{n, x}^{\Delta}(A):=P\left(\left(X_{1}, . ., X_{n}\right) \in A \mid S_{1}^{n} \in x, x+\Delta\right) .
$$

Define an operator T

$$
T\left(x_{1}, \ldots, x_{n}\right)_{k}:=\begin{aligned}
& \max _{1 \leq i \leq n} x_{i} \text { if } k=n \\
& x_{n} \text { if } x_{k}>\max _{1 \leq i<k} x_{i} \text { and } x_{k}=\max _{i \geq k} x_{i} \\
& x_{k} \text { otherwise }
\end{aligned}
$$

The operator T exchanges the last and the maximum component of a finite sequence.

Theorem

Suppose G is Δ - subexponential. Then there exists a sequence q_{n} such that

$$
\lim _{n \rightarrow \infty} \sup _{x>q_{n}} \sup _{A \in \mathcal{B}\left(\mathbb{R}^{n-1}\right)}\left|\mu_{n, x}^{\Delta} \circ T^{-1}(A \times \mathbb{R})-\mu^{n-1}(A)\right|=0
$$

Conditioning on $\left(S_{1}^{n} \in x+\Delta\right)$ affects only the maximum in the limit, and the $n-1$ smallest values become asymptotically independent.

Since, with $M_{n}:=\max \left(X_{1}, \ldots, X_{n}\right)$

$$
\mu_{n, x}^{\Delta}\left(M_{n}+\sum_{i=1}^{n-1}(T X)_{i} \in(x, x+s)\right)=1
$$

when

$$
S_{n-1} / b_{n} \text { converges to a stable law } H
$$

then

$$
\frac{M_{n}-x}{b_{n}} \rightarrow-H .
$$

A direct consequence, with $\Delta=(0, \infty)$

$$
v_{x}(A):=P\left(X_{1} \in A \mid X_{1}>x\right)
$$

then

$$
\lim _{n \rightarrow \infty} \sup _{x>q_{n}}\left\|\mu_{n, x} o T^{-1}-\left(\mu^{n-1} \times v_{x}\right)\right\|_{t . v .}=0
$$

An very interesting discussion on the values of s in Δ which yield different limiting behaviours for the conditional measure of the maximum.

INTEGRAL TRANSFORMS, SUMS AND EXTREMES

KARAMATA TAUBERIAN THEOREM, domains of attraction, heavy tails
$X_{1}, . . X_{n}$ i.i.d. $\quad F(x):=P\left(X_{1}<x\right), F(0)=0$.

$$
W_{n}:=\min \left(X_{1}, . . X_{n}\right)
$$

Assume $0<\alpha<1$ and F regularly varying at 0 with order α

$$
F(x)=x^{\alpha} L(1 / x) \text { as } x \rightarrow 0
$$

and
L slowly varying at infinity.

Define

$$
\begin{aligned}
M(0) & =0 \\
1-M(t) & =\frac{1}{\Gamma(1-\alpha)} F(1 / t), t>0
\end{aligned}
$$

Theorem

(e.g. Feller) $M \in D\left(G_{\alpha}\right)$ where G_{α} stable law of index α on \mathbb{R}^{+}: There exists $\left(\alpha_{n}\right)_{n}>0, \alpha_{n} \rightarrow 0$

$$
M^{n *}\left(\alpha_{n} t\right) \rightarrow G_{\alpha}(t), \quad t>0
$$

Define

$$
1-G(x):=\int_{0}^{\infty} e^{-t x} d M(t)
$$

Hence $\quad G(x)=\frac{1}{\Gamma(1-\alpha)} x^{\alpha} \int_{0}^{\infty} e^{-u} u^{-\alpha} L(u / x) d u$
Hence (Karamata)

$$
G(x) \sim x^{\alpha} L(1 / x) \quad \text { as } \quad x \rightarrow 0
$$

Now

$$
(1-G)^{n}\left(\alpha_{n}^{-1} x\right)=\int_{0}^{\infty} e^{-t x} d M^{n *}\left(\alpha_{n} t\right) \text { for all } x>0
$$

and

$$
\int_{0}^{\infty} e^{-t x} d M^{n *}\left(\alpha_{n} t\right) \rightarrow e^{-x^{\alpha}}
$$

Therefore

$$
G \in D\left(\Phi_{\alpha}\right) \text { for the minimum. }
$$

Further

$$
G(x) \sim F(x) \text { as } \quad x \rightarrow 0
$$

Hence

$$
F \in D\left(\Phi_{\alpha}\right) \text { for the minimum. }
$$

For $\alpha \geq 1$, and a part of Gumbel's domain of attraction: the same (change of variables, etc).
All properties for sums translate into properties for extremes

EXAMPLE RATES, rates for stable laws, in the 80'th.

$$
\begin{aligned}
& \quad D_{n}:=\sup _{x}\left|P\left(W_{n}<n^{-1 / \alpha} x\right)-\Phi_{\alpha}(x)\right| \\
& \text { (H) } \quad \frac{\left|F(x)-C x^{\alpha}\right|}{x^{\alpha}}<K x^{\delta} \quad \text { for } \quad 0<x<A \\
& \text { and } \quad F(x)-C x^{\alpha} \text { monotone on } V(0)
\end{aligned}
$$

Then
α

$$
\begin{aligned}
& 0<\delta<\alpha \Rightarrow D_{n}<K n^{1-1 / \alpha} \\
& 0<\delta<1 \Rightarrow D_{n}<K^{1-\delta / \alpha} \\
& \delta>1 \Rightarrow D_{n}<n^{-1-1 / \delta}
\end{aligned}
$$

Extensions to maxima, to ≥ 1, to part of $D(\Lambda)$, etc \ldots
See B (1987)

MOMENT GENERATING FUNCTIONS, Light tails

Gibbs conditioning principles under extreme deviations

An Abelian type Theorem

HYPOTHESES:NEAR LOG-CONCAVITY

Define the density function $p(x)$,

$$
\begin{equation*}
p(x)=c \exp (-(g(x)-q(x))) \quad x \in \mathbb{R}_{+} \tag{5}
\end{equation*}
$$

where c is some positive constant.
Define $h(x):=g^{\prime}(x)$, Assume h is smooth regularly varying (nearly Weibull case) or h is smooth rapidly varying ($p(x)$ damps very quickly to $0)$.
Define the inverse function of h through

$$
\begin{equation*}
\psi(u):=h^{\leftarrow}(u):=\inf \{x: h(x) \geq u\} . \tag{6}
\end{equation*}
$$

Juszczak and Nagaev, A. V. (2004), Balkema, Kluppelberg, Resnick (1993).

The i.i.d random variables X_{1}, \ldots, X_{n} have common density p with

$$
p(x)=c \exp (-(g(x)-q(x)))
$$

$g(x)$ is a positive convex differentiable function which satisfies

$$
\lim _{x \rightarrow \infty} g(x) / x=\infty
$$

Let $M(x)$ be some nonnegative continuous function on \mathbb{R}^{+}for which

$$
-M(x) \leq q(x) \leq M(x) \quad \text { for all positive } x \text { with } M(x)=O(\log g(x))
$$

Cramer

$$
\Phi(t):=E \exp t X<\infty \text { on } V(0)
$$

The r.v. \mathcal{X}_{t} has tilted density defined on \mathbb{R} with parameter t

$$
\pi_{t}(x):=\frac{\exp t x}{\Phi(t)} p(x)
$$

The expectation, the three first centered moments of \mathcal{X}_{t} defined on \mathcal{N}
$m(t):=\frac{d}{d t} \log \Phi(t) \quad s^{2}(t):=\frac{d}{d t} m(t) \quad \mu_{j}(t):=\frac{d}{d t} s^{2}(t), j=3,4$.

Theorem

(Biret, B, Cao, 2014) It holds as $t \rightarrow \infty$

$$
\begin{aligned}
& m(t) \sim \psi(t), \quad s^{2}(t) \sim \psi^{\prime}(t), \quad \mu_{3}(t) \sim \psi^{\prime \prime}(t), \\
& \mu_{j}(t) \sim M_{j} s^{j}(t) \text { for } j \text { even }>3 \\
& \mu_{j}(t) \sim \frac{M_{j+3}-3 j M_{j-1}}{6} \text { for } j \text { odd }>3
\end{aligned}
$$

where M_{j} is the j-th moment of standard normal density.

Edgeworth Expansion for some asymptotic array

With t determined by $m(t)=a_{n}$ define $\pi^{a_{n}}$ through

$$
\pi^{a_{n}}(x)=e^{t x} p(x) / \Phi(t)
$$

Note

$$
m(t) \rightarrow \text { essup(support } P) \text { as } t \rightarrow \infty
$$

Define $s:=s(t)$ and the normalized density of $\pi^{a_{n}}$ by

$$
\bar{\pi}^{a_{n}}(x)=s \pi^{a_{n}}\left(s x+a_{n}\right)
$$

and denote by ρ_{n} the normalized density of n-convolution $\bar{\pi}_{n}^{a_{n}}(x)$,

$$
\rho_{n}(x):=\sqrt{n} \bar{\pi}_{n}^{a_{n}}(\sqrt{n} x)
$$

Theorem

Denote by $\phi(x)$ the standard normal density, uniformly upon x it holds

$$
\rho_{n}(x)=\phi(x)\left(1+\frac{\mu_{3}}{6 \sqrt{n} s^{3}}\left(x^{3}-3 x\right)\right)+o\left(\frac{1}{\sqrt{n}}\right) .
$$

Local Gibbs conditional result

$$
\pi^{a_{n}}(x):=e^{t x} p(x) / \Phi(t)
$$

Theorem

$$
p\left(X_{1}=x \mid S_{1}^{n}=n a_{n}\right)=\pi^{a_{n}}(x)(1+o(1 / \sqrt{n}))
$$

Extensions: Law of long runs under extreme condition, asymptotic independence, etc. Applications: Rare event simulation, IS

Basic fact: invariance: For all x and all α in the range of X_{1}

$$
p\left(X_{1}=x \mid S_{1}^{n}=n a_{n}\right)=\pi^{\alpha}\left(X_{1}=x \mid S_{1}^{n}=n a_{n}\right)
$$

where on the LHS, the r.v's X_{i} 's are sampled i.i.d. under p and on the RHS, sampled i.i.d. under π^{α}.

Bayes, independence

$$
\begin{aligned}
& p\left(X_{1}=y_{1} \mid S_{1}^{n}=n a_{n}-y_{1}\right)=\pi^{m}\left(X_{1}=y_{1} \mid S_{1}^{n}=n a_{n}\right) \\
& =\pi^{a}\left(X_{1}=y_{1}\right) \frac{\pi^{a}\left(S_{2}^{n}=n a_{n}-y_{1}\right)}{\pi^{a}\left(S_{1}^{n}=n a_{n}\right)}=\frac{\sqrt{n}}{\sqrt{n-1}} \pi^{a}\left(X_{1}=y_{1}\right) \frac{\widetilde{\pi_{n-1}}\left(z_{1}\right)}{\widetilde{\pi_{n}}(0)}
\end{aligned}
$$

where $\widetilde{\pi_{n-1}}$ is the normalized density of S_{2}^{n} under i.i.d. sampling under π^{a};correspondingly, $\widetilde{\pi_{n}}$ is the normalized density of S_{1}^{n} under the same sampling. A r.v. with density π^{a} has expectation a_{n} and variance $s^{2}(t)$ with $m(t)=a_{n}$. Here $z_{1}:=\left(n a_{n}-y_{1}\right) / s(t) \sqrt{n-1}$.

Perform a third-order Edgeworth expansion of $\widetilde{\pi_{n-1}}\left(z_{1}\right)$. It follows

$$
\widetilde{\pi_{n-1}}\left(z_{1}\right)=\phi\left(z_{1}\right)\left(1+\frac{\mu_{3}}{6 s^{3} \sqrt{n-1}}\left(z_{1}^{3}-3 z_{1}\right)\right)+o\left(\frac{1}{\sqrt{n}}\right)
$$

The approximation of $\widetilde{\pi_{n}}(0)$

$$
\begin{aligned}
\widetilde{\pi}(0) & =\phi(0)\left(1+o\left(\frac{1}{\sqrt{n}}\right)\right) \\
p\left(X_{1}=y_{1} \mid S_{1}^{n}=n a_{n}\right) & =\left(\frac{\sqrt{n}}{\sqrt{n-1}} \pi^{a}\left(X_{1}=y_{1}\right)(1+o(1 / \sqrt{n}))\right) \\
& =\left(1+o\left(\frac{1}{\sqrt{n}}\right)\right) \pi^{a_{n}}\left(X_{1}=y_{1}\right)
\end{aligned}
$$

The asymptotic location of x under the conditioned distribution

Let \mathcal{X}_{t} be a r.v. with density $\pi^{a_{n}}$ where $m(t)=a_{n}$. Recall that $E \mathcal{X}_{t}=a_{n} \quad$ and $\operatorname{Var} \mathcal{X}_{t}=s^{2}$. It holds

$$
\begin{gathered}
\log E \exp \lambda\left(\mathcal{X}_{t}-a_{n}\right) / s=-\lambda a_{n} / s+\log \phi\left(t+\frac{\lambda}{s}\right)-\log \phi(t) \\
\log E \exp \lambda\left(\mathcal{X}_{t}-a_{n}\right) / s=\frac{\lambda^{2}}{2} \frac{s^{2}\left(t+\frac{\theta \lambda}{s}\right)}{s^{2}}
\end{gathered}
$$

$t \rightarrow s(t)$ is self neglecting.
$\left(\mathcal{X}_{t}-a_{n}\right) / s$ converge to a standard normal variable $N(0,1)$ in distribution, as $n \rightarrow \infty$. This amounts to say that

$$
\mathcal{X}_{t}=a_{n}+s N(0,1)+o_{\Pi^{a n}}(1) .
$$

Weibull type: $\log p(x) \sim x^{\gamma}: 1<\gamma \leq 2$ the variance of the tilted distribution $\Pi^{a_{n}}$ has a non degenerate variance for all a_{n} (in the standard gaussian case, $\Pi^{a_{n}}=N\left(a_{n}, 1\right)$), as does the conditional distribution of X_{1} given $\left(S_{1}^{n}=n a_{n}\right)$. If $\gamma>2$ it concentrates at a_{n} since $s:=s(t) \rightarrow 0$ 兰

Extension to other conditioning events

Let $X_{1}, . ., X_{n}$ be n i.i.d. r.v's with common density p defined on \mathbb{R}^{d} and let f denote a measurable function from \mathbb{R}^{d} onto \mathbb{R} such that $f\left(X_{1}\right)$ has a density p_{f}. Assume that

$$
p_{f}(x)=\exp -(g(x)-q(x))
$$

and we denote accordingly $\phi_{f}(t)$ its moment generating function. Denote $\Sigma_{1}^{n}:=f\left(X_{1}\right)+. .+f\left(X_{n}\right)$.
Denote for all a in the range of f

$$
\pi_{f}^{a}(x):=\frac{\exp t f(x)}{\phi_{f}(t)} p(x)
$$

where t is the unique solution of $m(t):=(d / d t) \log \phi_{f}(t)=a_{n}$ and $\Pi_{f}^{a_{n}}$ the corresponding probability measure. Denote $P_{f, a_{n}}$ the conditional distribution of X_{1} given $\left(\Sigma_{1}^{n}=n a_{n}\right)$.

Theorem

$$
\sup _{: \in \mathcal{B}(\mathbb{R})}\left|P_{f, a_{n}}(C)-\Pi_{f}^{a_{n}}(C)\right| \rightarrow 0
$$

Differences between Gibbs principle under LDP and under extreme deviation

Consider the application of the above result to r.v's $Y_{1}, . ., Y_{n}$ with $Y_{i}:=\left(X_{i}\right)^{2}$ where the X_{i} 's are i.i.d. and are such that Y is light tailed Weibull distribution with parameter larger than 2 . By the Gibbs conditional principle under a point conditioning (Diaconis,Freedman 1981), for fixed a, conditionally on ($\sum_{i=1}^{n} Y_{i}=n a$) the generic r.v. Y_{1} has a non degenerate limit distribution

$$
p_{Y}^{*}(y):=\frac{\exp t y}{E \exp t Y_{1}} p_{Y}(y)
$$

and the limit density of X_{1} under $\left(\sum_{i=1}^{n} X_{i}^{2}=n a\right)$ is

$$
p_{X}^{*}(x):=\frac{\exp t x^{2}}{E \exp t X_{1}^{2}} p_{X}(x)
$$

a non degenerate distribution, with $m_{Y}(t)=a$.
Instead when $a_{n} \rightarrow \infty$ the distribution of X_{1} under the condition $\left(\sum_{i=1}^{n} X_{i}^{2}=n a_{n}\right)$ concentrates sharply at $-\sqrt{a_{n}}$ and $+\sqrt{a_{n}}$.

EDP under exceedances

$$
p_{A_{n}}\left(X_{1}=x\right):=p_{A_{n}}\left(X_{1}=x \mid S_{1}^{n}>a_{n}\right)
$$

Then for any family of Borel sets B_{n} such that

$$
\lim _{n \rightarrow \infty} \inf _{n} P_{A_{n}}\left(B_{n}\right)>0
$$

it holds

$$
P_{A_{n}}\left(B_{n}\right)=(1+o(1)) \Pi_{a_{n}}\left(B_{n}\right) .
$$

as $n \rightarrow \infty$. Csiszar (1984) in the LDP domain, etc

Perspectives: Gibbs measures: Erdös-Rényi under dependence for small increments, etc
Long runs under extreme conditions, AR models Stretched exponential sampling

References

Armendariz,I., Loulakis, M.: Conditional distribution of heavy tailed random variables on large deviations of their sum, St. Proc. Appl. (2012) Balkema, A.A., KI "uppelberg, C., Resnick, S.I.: Densities with Gaussian tails. Proc. London. Math. Soc.(3) 66(3), 568-588 (1993)
Barbe, Ph., Broniatowski, M Blowing number of a distribution for a statistics and loyal estimators. Statist.Probab. Lett 69(4), 465-475 (2004) Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation: Cambridge University Press, Cambridge (1989)
Biret, M., Broniatowski, M., Cao, Z.: A sharp Abelian theorem for the Laplace transform. In Limith Theorems and Mathematical Statistics, Festschrift P Deheuvels, to appear (2014)
Broniatowski, M Convergence for the sample extremes via convolutions.
Mathematical statistics and probability theory, Vol. A (Bad
Tatzmannsdorf, 1986), 43-52, Reidel, Dordrecht, 1987.
Broniatowski, M, Cao, Z.: Light tails; all summands are large when the empirical mean is large. Extremes, 17(2), 305-336 (2014)
Csisz'ar, I.: Sanov property, generalized I-projection and a conditional

Dembo, A., Zeitouni, O.: Refinements of the Gibbs conditioning principle. Probab. Th Rel Fields 104, 1-14 (1996) Diaconis, P., Freedman, D.A.: Conditional limit theorems for exponential families and finite versions of de Finetti's theorem. J. Th Prob1, 381-410 (1988)

Juszczak, D., Nagaev, A.: Local large deviation theorem for sums of I.I.D. random vectors when the Cram'er condition holds in the whole space. Prob Math. Statist. 24(2), 297-320 (2004) Mason, D.M.: An extended version of the Erd os-R'enyi strong law of large numbers. Ann. Probab 17(1),257
Sornette, D.: Critical phenomena in natural sciences, 2d Edition Springer Series in Synergetics (2006)

Thank you

