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1. Discrete-time insurance risk model.

Let {Xi, i ≥ 1} and {Yi, i ≥ 1} be insurance and financial risks and the aggregate
net losses

Sn =

n∑
i=1

Xi

i∏
j=1

Yj , (1)

for each positive integer n. The finite and infinite time ruin probabilities are

ψ(x, n) = P

(
max

1≤k≤n
Sk > x

)
, (2)

ψ(x) = lim
n→∞

ψ(x, n) = P

(
sup
n≥1

Sn > x

)
, (3)

where x ≥ 0 is interpreted as the initial capital.
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If we denote the product θi =
∏i
j=1 Yj in (1), the ruin probabilities ψ(x, n) and ψ(x)

represent the tail probabilities of the maximum of randomly weighted sums.
In case of independence between {Xi, i ≥ 1} and {θi, i ≥ 1}, under the presence of
heavy-tailed insurance risks, was recently established the asymptotic formula

ψ(x, n) ∼
n∑
i=1

P(Xi θi > x), x→∞ , (4)

holds for each fixed n, or

ψ(x) ∼
∞∑
i=1

P(Xi θi > x) , x→∞ . (5)
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1. Dependence structure.

The survival copula C(u, v) is defined by the formula

C(u, v) = u+ v − 1 + C(1− u, 1− v) , (u, v) ∈ [0, 1]2 ,

with respect to the given copula C(u, v). Clearly, the survival copula with respect to
C(u, v) can be represented as

C(F (x), G(y)) = P(X > x, Y > y) .
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Assume that the copula function C(u, v) is absolutely continuous. Denote by

C1(u, v) =
∂
∂uC(u, v), C2(u, v) =

∂
∂vC(u, v), C12(u, v) =

∂2

∂u ∂v C(u, v). Then

C2(u, v) :=
∂

∂v
C(u, v) = 1− C2(1− u, 1− v) ,

and

C12(u, v) :=
∂2

∂u ∂v
C(u, v) = C12(1− u, 1− v) .

Assumption A1. (Albrecher et al. 06) There exists a positive constant M such
that

lim sup
v↑1

lim sup
u↑1

C12(u, v) = lim sup
v↑1

lim sup
u↑1

C12(1− u, 1− v) < M .
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Assumption A2. (Asimit and Badescu 10) The relation

C2(u, v) ∼ uC12(0+, v) , u ↓ 0 ,

holds uniformly on (0, 1).
Clearly, Assumption A2 is equivalent to

1− C2(u, v) ∼ (1− u)C12(1−, v) , u ↑ 1 ,

holds uniformly on (0, 1). Thus, if the copula C(u, v) of the random vector (X, Y )
satisfies Assumptions A1 and A2, then the copula of (X+, Y ), denoted by C+(u, v),
satisfies these two assumptions as well.
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Assumption A3. The relation

C2(u, v) = 1− C2(1− u, 1− v)→ 0 , u ↓ 0 ,

holds uniformly on [0, 1].
We remark that Assumption A3 is equivalent to the fact that

P(X ≤ x | Y = y) = C2[F (x), G(y)]→ 0 , x→ −∞ , (6)

holds uniformly on R.
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We remind the classes of distributions:

1.

L =

{
F
∣∣∣ lim
x→∞

F (x− y)
F (x)

= 1, ∀ y ∈ R
}
,

2.

D =

{
F
∣∣∣ lim sup

x→∞

F (xu)

F (x)
<∞, ∀ u ∈ (0, 1)

}
.

3.

C =
{
F
∣∣∣ lim
u↑1

lim sup
x→∞

F (xu)

F (x)
= 1,

}
.
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A distribution F on R belongs to the class R−α, if limF (x y)/F (x) = y−α for some
α ≥ 0 and all y > 0. It is well known that the following inclusion relationships hold:

R−α ⊂ C ⊂ L ∩ D ⊂ L

Furthermore, for a distribution F on R, denote its upper and lower Matuszewska
indices, respectively, by

J+
F = − lim

y→∞

logF ∗(y)

log y
with F ∗(y) := lim inf

F (x y)

F (x)
for y > 1 ,

J−F = − lim
y→∞

logF
∗
(y)

log y
with F

∗
(y) := lim sup

F (x y)

F (x)
for y > 1 .

Clearly, F ∈ D is equivalent to J+
F <∞. For each i ≥ 1, denote by Hi the

distribution of Xi

∏i
j=1 Yj, j ≥ 1 and let H1 = H .
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3. Asymptotic results.

Theorem 1. In the discrete-time risk model, assume that {(Xi, Yi), i ≥ 1} are i.i.d.
random vectors with generic random vector (X, Y ) satisfying Assumptions A1–A3. If
F ∈ C and EY p <∞ for some p > J+

F , then, for each fixed n ≥ 1, it holds that

ψ(x, n) ∼
n∑
i=1

Hi(x) . (7)
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Corollary 1. (1) Under the conditions of Theorem 1, if F ∈ R−α for some α ≥ 0,
then, for each fixed n ≥ 1, it holds that

ψ(x, n) ∼ EY αc
1− (EY α)n

1−EY α
F (x) , (8)

by convention, (1− (EY α)n)/(1−EY α) = n if EY α = 1.
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Theorem 2. Under the conditions of Theorem 1, if J−F > 0 and EY p < 1 for some
p > J+

F , then it holds that

ψ(x) ∼
∞∑
i=1

Hi(x) . (9)
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Corollary 2. Under the conditions of Theorem 2, if F ∈ R−α for some α > 0, then

ψ(x) ∼ EY αc
1−EY α

F (x) . (10)

Moreover, (8) holds uniformly over the integers {n ≥ 1}.
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The last result shows that the asymptotic relation (11) for the finite time probability is
uniform over the integers {n ≥ 1}.

Theorem 3. Under the conditions of Theorem 2, the asymptotic relation

ψ(x, n) ∼
n∑
i=1

Hi(x) . (11)

holds uniformly over the integers {n ≥ 1}.
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Thank you!


