A General Approach for Drawdown (Drawup) Risks of Time-Homogeneous Markov Processes[1]

Bin Li
Department of Statistics and Actuarial Science
University of Waterloo

8th Conference in Actuarial Science & Finance on Samos
May 29, 2014

[1]Based on a joint work with David Landriault (University of Waterloo) and Hongzhong Zhang (Columbia University)
Outline

- Introduction of drawdown and its applications

- Main results
Definition

- **Drawdown** measures the decline in value from the historical peak for an investment, fund or commodity.

- Consider a stochastic process \(X = \{X_t : t \geq 0\} \), the magnitude of drawdown at time \(T \) is defined by

\[
Y_T := M_T - X_T,
\]

where \(M_T = \sup_{0 \leq t \leq T} X_t \)
The maximum drawdown up to time T is defined by

$$\sup_{0 \leq t \leq T} Y_t = \sup_{0 \leq t \leq T} \{ M_t - X_t \}$$
The first time the magnitude of drawdown exceeds a pre-specified level $a > 0$ is denoted by

$$\tau_a := \inf \{ t > 0 : Y_t \geq a \}.$$

(Maximum drawdown before time T exceeds $a) \iff (\tau_a \leq T)$
Who cares about drawdown?

- mutual funds managers
- financial mathematicians
- statisticians
- probabilists
- ...
- myself :)

Bin Li (University of Waterloo) Samos 2014
“The mutual fund industry and many investment professionals have a well-guarded secret they do not want the investing public to know about: drawdowns. Drawdowns are, in our opinion, the single most important determinant of investing success or failure for most investors.

One of the worst characteristics of drawdowns is that they frequently strike like tornados. They hit quickly, without warning, and cause immense damage. It’s often difficult to realize their devastation until after they have struck.”

Greg Miller, CPA, CEO
Wellesley Investment Advisors, Inc.
Wellesley, Massachusetts
April 2006 Issue of Investment Advisor
Applications: mutual funds (cont.)

- Frequently quoted **performance measures** (Schuhmacher and Eling, 2011)

 - **Calmar ratio** $= \frac{\text{annual rate of return}}{\text{maximum drawdown}}$

 - **Sterling ratio** $= \frac{\text{annual rate of return}}{\text{average of maximum drawdowns}}$

- **Burke ratio**, **Martin ratio**, **Pain ratio**, etc.

- Drawdown is an alternative measurement for **volatility**.
Applications: financial mathematics

- **Option pricing**: Russian option
 \[
 \text{Payoff} = \sup_{\tau} e^{-a\tau} \{ K, M_\tau \}
 \]
 \[
 \tau^* = \inf \{ t \geq 0 : Y_t \geq k^* \} \text{ for some } k^*
 \]

- **Insurance**: Carr et al. (2011), De Finetti dividend problem
Applications: statistics

Applications: probability

- **Drawdown and drawup processes** are usually referred as reflected processes

 \[Y_t = M_t - X_t \text{ and } \hat{Y}_t = X_t - m_t \]

- **Time-homogeneous diffusion processes**: Taylor (1975), Lehoczky (1977), Magdon et al. (2004), Pospisil et al. (2009)

In addition to the magnitude, there are other two aspects of drawdowns: frequency and duration.

Duration of drawdowns: Landriault, L., Zhang (2014)
Outline

- Introduction of drawdown and its applications
- Main results
Objectives

- Interested in the joint law of \((\tau_a, M_{\tau_a}, Y_{\tau_a}, G_{\tau_a})\), where

\[
G_{\tau_a} = \sup \{0 \leq t < \tau_a : M_t = X_t\}
\]

is the last time at maximum

- \(G_{\tau_a}\) is the **turning point from rising to crashing**
Methodologies

- Previous approaches (spectrally negative Lévy models and time-homogeneous diffusion models)

- Our approach (bound approach)
 - Two steps: constructing tight bounds + taking limits (some regularity assumptions)
 - Advantages: simple, strict, general
 - Building direct connections between drawdown problems and exit problems
Methodologies

- Previous approaches (spectrally negative Lévy models and time-homogeneous diffusion models)

- Our approach (bound approach)
 - Two steps: constructing tight bounds + taking limits (some regularity assumptions)
 - Advantages: simple, strict, general
 - Building direct connections between drawdown problems and exit problems
Consider a time-homogeneous Markov process X.

Define the first passage times

$$T_x^+ = \inf \{ t \geq 0 : X_t > x \} \quad \text{and} \quad T_x^- = \inf \{ t \geq 0 : X_t < x \}$$

For $u \leq x \leq v$, define two functions on two-sided exits

$$B^{(q,s)}(x; u, v) = \mathbb{E}_x \left[e^{-qT_v^+ - s(X_{T_v^+} - v)} 1\{ T_v^+ < T_u^- \} \right]$$

$$C^{(q,s)}(x; u, v) = \mathbb{E}_x \left[e^{-qT_u^- - s(u - X_{T_u^-})} 1\{ T_u^- < T_v^+ \} \right]$$

Analytically tractable models for B and C: one-sided Lévy, Kou’s double-exponential jump diffusion, meromorphic Lévy, time-homogeneous diffusion, etc.
For any \(\varepsilon \in (0, a) \), we have

\[
\begin{align*}
\mathbb{E}_x \left[e^{-q T_{x+\varepsilon}^+} 1\{T_{x+\varepsilon}^+ < \tau_a\} \right] &\leq B^{(q,0)}(x; x - a, x + \varepsilon) \\
\mathbb{E}_x \left[e^{-q T_{x+\varepsilon}^+} 1\{T_{x+\varepsilon}^+ < \tau_a\} \right] &\geq B^{(q,0)}(x; x + \varepsilon - a, x + \varepsilon)
\end{align*}
\]

and for \(\delta \geq 0 \),

\[
\begin{align*}
\mathbb{E}_x \left[e^{-q \tau_a - s (Y_{\tau_a} - a) - \delta (M_{\tau_a} - x)} 1\{\tau_a < T_{x+\varepsilon}^+\} \right] &\leq e^{s \varepsilon} C^{(q,s)}(x; x + \varepsilon - a, x + \varepsilon) \\
\mathbb{E}_x \left[e^{-q \tau_a - s (Y_{\tau_a} - a) - \delta (M_{\tau_a} - x)} 1\{\tau_a < T_{x+\varepsilon}^+\} \right] &\geq e^{-(s+\delta) \varepsilon} C^{(q,s)}(x; x - a, x + \varepsilon)
\end{align*}
\]
Main result 1

Assumption (1)

The following limits exist and are equal

\[K_a^{(q,s)} := \lim_{\varepsilon \downarrow 0} \frac{C^{(q,s)}(0; \varepsilon - a, \varepsilon)}{1 - B(q,0)(0; \varepsilon - a, \varepsilon)} = \lim_{\varepsilon \downarrow 0} \frac{C^{(q,s)}(0; -a, \varepsilon)}{1 - B(q,0)(0; -a, \varepsilon)}. \]

Theorem

Consider a general Lévy process \(X \) satisfying Assumption (1). Then

\[\mathbb{E}[e^{-q\tau_a - s(Y_{\tau_a} - a)}] = K_a^{(q,s)}. \]

- In particular, if \(X \) is spectrally negative Lévy, we recover Theorem 1 of Avram et al. (2004) and Proposition 2 of Pistorius (2004).
The following limits exist and satisfy

\[b_a^{(q,0)}(x) := \lim_{\varepsilon \downarrow 0} \frac{1 - B^{(q,0)}(x; x - a, x + \varepsilon)}{\varepsilon} \]

\[= \lim_{\varepsilon \downarrow 0} \frac{1 - B^{(q,0)}(x; x + \varepsilon - a, x + \varepsilon)}{\varepsilon} \]

\[= \lim_{\varepsilon \downarrow 0} \frac{1 - B^{(q,0)}(x - \varepsilon; x - a, x)}{\varepsilon} \]

\[= \lim_{\varepsilon \downarrow 0} \frac{1 - B^{(q,0)}(x - \varepsilon; x - \varepsilon - a, x)}{\varepsilon} \]

\[c_a^{(q,s)}(x) := \lim_{\varepsilon \downarrow 0} \frac{C^{(q,s)}(x; x - a, x + \varepsilon)}{\varepsilon} = \lim_{\varepsilon \downarrow 0} \frac{C^{(q,s)}(x; x + \varepsilon - a, x + \varepsilon)}{\varepsilon} \]

\[= \lim_{\varepsilon \downarrow 0} \frac{C^{(q,s)}(x - \varepsilon; x - a, x)}{\varepsilon} = \lim_{\varepsilon \downarrow 0} \frac{C^{(q,s)}(x - \varepsilon; x - \varepsilon - a, x)}{\varepsilon} \]
Theorem

Consider a spectrally negative time-homogeneous Markov process X satisfying Assumption (2). Then,

$$\mathbb{E}_x \left[e^{-q \tau_a - s(Y_{\tau_a} - a) - \delta(M_{\tau_a} - x)} \right] = \int_{x}^{\infty} e^{-\int_x^y (\delta + b^{(q,0)}(z))dz} c_a(q,s)(y)dy$$

- In particular, if X is a time-homogeneous diffusion, we recover results of Lehoczky (1977) by allowing downside jumps and incorporating the law of Y_{τ_a}.
Consider a Lévy process with two-sided jumps

\[X_t = \tilde{X}_t + \sum_{i=1}^{N_t^+} J_i^+ \]

- \(\tilde{X} \) is a spectrally negative Lévy process with Gaussian coefficient \(\sigma > 0 \)
- The Lévy measure \(\Pi \) satisfying \(\int_{(-1,0)} |x| \Pi(dx) < \infty \)
- \(N^+ \) is a Poisson process with arrival rate
Main result 3 (cont.)

Theorem

Consider a Lévy process X of the above form. Then,

$$
E \left[e^{-q \tau_a - rG_{\tau_a} - s(Y_{\tau_a} - a) - \delta M_{\tau_a}} \right] = \lim_{\varepsilon \downarrow 0} \frac{C(q,s)(a - \varepsilon; 0, a)}{\varepsilon} \delta + \lim_{\varepsilon \downarrow 0} \frac{1 - B(q + r, \delta)(a - \varepsilon; 0, a)}{\varepsilon}
$$

Corollary

(G_{τ_a}, M_{τ_a}) is independent of $(\tau_a - G_{\tau_a}, Y_{\tau_a})$
Independence of drawdown estimates

- We showed \((G_{\tau a}, M_{\tau a})\) is independent of \((\tau a - G_{\tau a}, Y_{\tau a})\) for this particular Lévy model with two-sided jumps.

- Landriault, L., Zhang (2014) shows that \((G_{\tau a}, M_{\tau a})\) is independent of \((\tau a - G_{\tau a}, Y_{\tau a}, Y_{\tau a^-})\) for spectrally negative Lévy processes.

- Rising part and crashing part of drawdowns are independent in both time and level scale!!!
Conjecture

\((G_{\tau_a}, M_{\tau_a})\) is independent of \((\tau_a - G_{\tau_a}, Y_{\tau_a}, Y_{\tau_a-})\) for general Lévy processes
Thank you for your attention!