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This talk presents a new model for a stock price in the form of a
geometric Markov renewal process (GMRP) which is one of many
examples of discrete-time semi-Markov random evolutions
(DTSMRE). We study asymptotic properties of the DTSMREs,
namely, averaging, diffusion approximation and normal deviations
by martingale weak convergence method. As applications we
present European call option pricing formula for GMRP.
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Random Evolutions

Random Evolutions (RE) are operator dynamical systems (in
Banach or Hilbert spaces) where an operator depends on
some stochastic process, Markov, semi-Markov, Lévy
processes, etc. (see Korolyuk & Swishchuk (1992, 1995),
Korolyuk & Limnios (2005))

For example:
d

dt
Φ(t) = C(z(t))Φ(t)
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Random Evolutions: Applications

REs have many applications:

traffic theory

storage theory

risk theory

biomathematics

financial mathematics

many others

In this talk we shall concentrate on financial applications of REs:
geometric Markov renewal process (GMRP) as a model for stock
price.
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Some Literature: DTSMRE

1 Markov chain case

Keepler (1998);
Skorokhod, Hoppensteadt, Salehi (2002);
Yin & Zhang (2005)

2 Embedded Markov case

Koroliuk & Swishchuk (1992, 1995);
Koroliuk & Limnios (2005);
Swishchuk & Wu (2003)

3 Semi-Markov chain case

Limnios (2010, 2011)
Limnios & Swishchuk (2013)
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Markov Renewal Chains / Semi-Markov Chains

Markov renewal process (xn, τn)n=0,1,2,...

P(xn+1 ∈ B, τn+1 − τn = k | x0, ..., xn; τ1, ..., τn)

= P(xn+1 ∈ B, τn+1 − Sn = k | xn)

Semi-Markov Chain zk = xτνk , k ∈ N, where νk = {n : τn ≤ k}.
Semi-Markov kernel

q(x,B, k) = P(xn+1 ∈ B, τn+1 − τn = k|xn = x)

= P (x,B)fxy(k)

Transition kernel of the EMC (xn): P (x,B)
Conditional distribution of sojourn time: fxy(k), and
hx(k) = q(x,E, k).
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The semi-Markov setting

Let us consider an ergodic SMC z with state space (E, E) ;
semi-Markov kernel q and ergodic probability π.
Define the backward recurrence chain γ, by

γk := k − τνk .

For the MC (z, γ) define:
◮ P ♯ the transition operator,
◮ π♯ the stationary probability, and
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Let Π be the stationary projection operator, i.e.,

Πϕ(x, s) =
∑
ℓ≥0

∫
E
π♯(dy × {ℓ})ϕ(y, ℓ)1(x, s).

The potential operator R0 of Q♯ := P ♯ − I, i.e.,

R0 = (Q♯ +Π)−1 −Π =
∑
n≥0

[(P ♯)n −Π].

And Fk := σ{zℓ, γℓ; ℓ ≤ k}, k ∈ N.
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A Discrete-Time Semi-Markov Random

Evolution

Let B be a Banach space and a family of contraction operators
D(x), x ∈ E, and I the identity operator.
Define now the DTSMRE Φk, k ∈ N, on B by

Φkϕ = D(zk)D(zk−1) · · ·D(z2)D(z1)ϕ, k ≥ 1, and Φ0 = I.

For ϕ ∈ B0 = ∩x∈ED(D(x)).
Thus we have

Φk = D(zk)Φk−1.
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Stochastic Approximation

We consider series schemes: Φε, ε > 0,
for perturbing operators: Dε(x)

Average approximation

Diffusion approximation

Diffusion approximation with equilibrium
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Averaging

Assumptions:

A1: The MC (zk, γk, k ∈ N) is uniformly ergodic with ergodic
distribution π♯(B × {k}), B ∈ E , k ∈ N.

A2: The moments m2(x), x ∈ E, are uniformly bounded, and
supx

∑
k≥T k2hx(k) → 0, as T → ∞.

A3: The perturbed operators Dε(x) have the following
representation on B

Dε(x) = I + εD1(x) + εDε
0(x),

where operators D1(x) on B are closed and
B0 := ∩x∈ED(D1(x)) is dense in B, B0 = B. Operators
Dε

0(x) are negligible, i.e.,
limε→0 ‖D

ε
0(x)ϕ‖ = 0 for any ϕ ∈ B0.

A4: We have:
∫
E π(dx) ‖D1(x)ϕ‖

2 < ∞.
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Averaging

Assumptions (cont’d):

A5: There exists Hilbert spaces H and H∗ such that compactly
embedded in Banach spaces B and B∗, respectively, where
B∗ is a dual space to B.

A6: Operators Dε(x) and (Dε)∗(x) are contractive on Hilbert
spaces H and H∗, respectively.
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Averaging

THEOREM

Under Assumptions A1-A6, the following weak convergence takes
place

Φε
[t/ε] =⇒ Φ(t), ε → 0,

where the limit process Φ(t) is determined by the following
equation

Φ(t)ϕ− ϕ−

∫ t

0
LΦ(s)ϕds = 0, 0 ≤ t ≤ T,

and the limiting operator is given by:

LΠ = ΠD1(·)Π.
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Diffusion approximation

Assumptions:

D1: Let us assume that the perturbed operators Dε(x) have the
following representation in B

Dε(x) = I + εD1(x) + ε2D2(x) + ε2Dε
0(x),

where operators D2(x) on B are closed and
B0 := ∩x∈ED(D2(x)) is dense in B, B0 = B; operators
Dε

0(x) are a negligible operator, i.e., limε→0 ‖D
ε
0(x)ϕ‖ = 0.

D2: The following balance condition holds

ΠD1(x)Π = 0. (1)

D3: The moments m3(x), x ∈ E, are uniformly bounded.
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Diffusion approximation

THEOREM

Under Assumptions A1, A5-A6, and D1-D3, the following weak
convergence takes place

Φε
[t/ε2] =⇒ Φ0(t), ε → 0,

where the limit random evolution Φ0(t) is a ”diffusion random
evolution” determined by the following generator

L = ΠD2(x)Π + ΠD1(x)R0D1(x)Π−ΠD2
1(x)Π.
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Diffusion approximation with equilibrium

W ε
t := ε−1/2[Φε

[t/ε] − Φ(t)].

THEOREM

Under Assumptions A1, A5-A6, and D3, with operators Dε(x) in
A3, instead of D1, the deviated semi-Markov random evolution W ε

t

weakly convergence, when ε → 0, to the diffusion random
evolution W 0

t defined by the following generator

L = Π(D1(x)−D1)R0(D1(x)−D1)Π.
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Geometric Markov Renewal Process (GMRP)

We consider GMRP as an example of a DTSMRE.
GMRP is a generalization of Aase (1988) geometric compound
Poisson process in finance and Cox-Ross-Rubinstein (1976) discrete
time model for the stock price.
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Geometric Markov Renewal Process (GMRP)

Let ρ(x) be a bounded continuous function on E such that
ρ(x) > −1. The following functional on semi-Markov chain

Sk := S0

k∏
l=1

(1 + ρ(zl)), (3)

where S0 > 0, is called Geometric Markov Renewal Process
(GMRP).

We model stock price as Sk-GMRP.
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The GMRP

If we define the operator D(z) on C0(R) in the following way

D(z)ϕ(s) := ϕ(s(1 + ρ(z))),

then the discrete-time semi-Markov random evolution Φk has the
following presentation:

Φkϕ(s) =
k∏

l=1

D(zl)ϕ(s) = ϕ(s
k∏

l=1

(1 + ρ(zl)) = ϕ(Sk),

where S(0) = S0 = s, and we suppose that
∏0

k=1 = 1.
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Geometric Compound Poisson Process as a

GMRP

The GMRP process we call such by analogy with the geometric
compound Poisson process

St = S0

N(t)∏
k=1

(1 + Yk),

where S0 > 0, N(t) is a standard Poisson process, (Yk)k∈N are
i.i.d. r.v., which is a trading model in many financial applications
as a pure jump model (See Aase (1988)).
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Cox-Ross-Rubinstein Process for Stock Price

as a GMRP

If Sk is the stock price at day k, then

Sk = S0

k∏
l=1

(1 + ρl),

where ρl = a with probability p > 0, and ρl = b with probability
1− p, where −1 < a < r < b and r > 0 is the interest rate. This is
Binomial model for stock price (See Cox-Ross-Rubinstein (1976)).
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Averaging of GMRP

Now, define the following sequence of processes:

Sε
t := S0

[t/ε]∏
l=1

(1 + εa(zl)), t ∈ R+, S0 = s.

Then under averaging conditions the limit process S̄k has the
following form

S̄(t) = S0e
ât,

where â =
∫
E π(dz)a(z).
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Diffusion Approximation of GMRP

If we define the following sequence of processes

Sε(t) := S0

[t/ε2]∏
l=1

(1 + εa(zl)), t ∈ R+, S0 = s,

then, in the diffusion approximation scheme, we have the following
limit process S0(t)

S0(t) = S0e
−tâ2/2eσaw(t),

where

â2 :=

∫
E
π(dz)a2(z),

σ2
a :=

∫
E
π(dz)[a2(z)/2 + a(z)R0a(z)].
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Diffusion Approximation with Equilibrium of

GMRP

Let us consider the following normalized GMRP:

wε
t := ε−1/2[ln(Sε

t /S0)− ât].

It is worth noticing that in finance the expression ln(Sε
t /S0)

represents the log-return of the underlying asset (stock, e.g.) Sε
t .

Then this process converges to the following process σwt, where

σ2 =

∫
E
π(a(z)− â)R0(a(z)− â),

and wt is a standard Wiener process.
In this way, the GMRP Sε

t may be presented in the following
approximated form

Sε
t ≈ S0e

ât+
√
εσwt .
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Scheme of Proofs

◮ Step 1: Compensating operator convergence

Φε
[t/εr ], z[t/εr ], γ[t/εr], t ≥ 0, ε > 0, r = 1, 2.

Construction of the compensating operator, Lε (main part):
Averaging

L
ε(x) := ε−1Q♯ + P ♯D1(x) + P ♯Dε

0
(x)

Diffusion Approximation

L
ε(x) := ε−2Q♯ + ε−1P ♯D1(x) + P ♯D2(x) + P ♯Dε

0
(x)

Solving the singular perturbation problem

L
εφε(u, x) = Lφ(u) + θε.
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Step 2: Tightness

1. The family of processes Φε
[t/ε]ϕ, ϕ ∈ B0, as ε → 0, satisfy the

compact containment condition and its limit points belong to
CB[0,∞).
2. The process

M ε
t := Φε

[t/ε] − I −

[t/ε]−1∑
ℓ=0

[P ♯Dε(·)− I]Φε
ℓ ,

is an F[t/ε]-martingale.

3. The family ℓ(
∑[t/ε]

k=0 Eπ[Φ
ε
k+1ϕ− Φε

kϕ | Fk]) is relatively
compact for all ℓ ∈ B

∗
0, dual of the space B0.

4. The family ℓ(M ε
[t/ε]ϕ) is relatively compact for any ℓ ∈ B∗

0 , and
any ϕ ∈ B0.
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Concluding remarks

◮ RE General Framework.

◮ We are studying the reduced random media case.

◮ Additional results for controlled processes are also
obtained.

◮ Additional applications can be considered.
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