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Intro

• forecasting mortality
B mortality is a dynamic phenomenon ; longevity:

mortality declining across most countries, non
homogeneously with respect to ages

B social cost of longevity ; see IMF [12] report
B valuation of life insurance and pension liabilities
B socio-demographic studies
B wide literature on forecasting mortality in the last 20 years,

since the pioneering paper by Lee and Carter
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Looking at More than One Population
• Related populations

B share common features
B differ in other respects

• issues/advantages in joint mortality forecasting
B consistency
B exploit common patterns
B lower sampling error in small populations
B convergence?

• examples
B regions of a country
B males/females
B smokers/non smokers
B annuity/pension fund book vs general population
B socio economic covariates ; IMD in UK
B affluence measures ; pension amount, salary
B . . .
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Transfering Longevity Risk
• pension funds are exposed to longevity risk; typical

de-risking solutions include
B reinsurance
B pension scheme buy-in and buy-out
B derivative based transactions

• the last 10 years have seen, in UK and North-America,
many bespoke derivative transactions (see Blake et al.
[13])
B ; perfect hedging
B not transparent
B costly
B unattractive for other parties

• an index based (q forward, longevity swaps) transaction
requires modelling the basis to understand the risk
reduction ; multi (2?) population modelling to
understand risk reduction (see Li and Hardy [11], Cairns et
al. [13], Jarner and Kryger [13])
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Different Approaches

• when modelling and forecasting mortality, several
approaches are possible
B target central death rates, normal errors (Lee-Carter [92]),

log link function
B target number of deaths as Poisson (Brouhns et al. [02]),

log link function
B target number of deaths as Binomial (CBD [06]), logit link

function
B target improvement rates, identity link function

• looking then at the (sub)populations, at least two routes
can be followed
B ‘joint modelling’ ; all populations equal
B ‘relative (hierarchical) modelling’ ; one population drives

the other(s)
B model both sub and general populations ; consistency?
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What we do

• extend (Poisson) Lee-Carter to several populations⇒
focus on 5 specific examples
• model improvement rates for several populations and the 5

equivalent models
• focus on simple, straightforward extension of the basic

Lee-Carter
• estimate and compare the 10 models on a data set of

mortality data for 18 regions of Italy
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Mortality - 3 regions
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Data

• I populations — i = 1, . . . , I
• T calendar years — t = t0, t0 + 1, . . . , t0 + T − 1
• X age groups — x = x0, x0 + 1, . . . , x0 + X − 1
• for population i, year t, age group x, we have

di
x,t = number of deaths in [t, t + 1) aged x last birthday,

ETRi
x,t = central exposed to risk

⇒ central death rate mi
x,t =

di
x,t

ETRi
x,t
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Poisson Model
• number of deaths di

x,t realizations of Di
x,t (Brouhns et al

[02])
• Cox (doubly-stochastic model): conditionally on (mi

x,t)x,t,i,
the number of deaths
B are independent
B have distribution

Di
x,t ∼ Poisson(ETRi

x,t mi
x,t)

• we model mi
x,t as follows (Hyndman and Ullah [06])

assuming there are L time indices

log mi
x,t = αi

x +
L∑

j=1

βi
x,j kt,j

• idea:
B number of factors L related to I
B choose kt,j appropriately
B add identifiability constraints as appropriate
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Poisson Models. . .
• P1 — (Booth et al. [02], Haberman and Renshaw [03])

log mi
x,t = αi

x + βi
x,1 ki

t,1 + βi
x,2 ki

t,2

• P2 — (Augmented Common Factor, Li and Lee [05], Li
and Hardy [11], Hyndman et al. [13]): kt,1 common factor,
ki

t,2 ith population specific factor

log mi
x,t = αi

x + βi
x,1 kt,1 + βi

x,2 ki
t,2

• P3 — (Lee and Carter [1992], Li and Hardy [11])

log mi
x,t = αi

x + βi
x ki

t

each group has its own factor ki
t ⇒ correlation arises from

the modelling of (ki
t)i
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Poisson Models. . .

• P4 — J1, J2, . . . , Jg partition of {1, . . . , I} (I > 2)
B some populations are ‘more related’ than others
B g time indices, one for each of subgroup⇒ reduce number

of parameters
B if i ∈ Jh then the time index is kh

t

for i ∈ Jh

log mi
x,t = αi

x + βi
xk

h
t

• in our case, choose (see next slide) J1 = {1, 2, 3, 4, 5, 6},
J2 = {7, 8, 9}, J3 = {10, 11, 12}, J4 = {13, 18},
J5 = {14, 15, 16, 17}; clustering obtained by similarity
with respect to period life expectancy at birth
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Poisson Models. . .

Figure: Italy divided in the considered 18 areas.
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Poisson Models. . .

• P5 — (Joint K Model, Carter and Lee [92], Li and Hardy
[11], Wilmoth and Valkonen [01], Delwarde et al. [06]) a
single time index driving all the rates⇒ perfect correlation

log mi
x,t = αi

x + βi
xkt

• models are nested: P5 ⊂ P4 ⊂ P3 ⊂ P2 ⊂ P1
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Improvement Rates

• use mortality improvement rates rather than rates⇒ slope
vs level
• used recently by

B Willets [04]
B Richards et al. [05]
B Baxter [07]
B Haberman and Renshaw [12,13]
B Mitchell et al [13]

• idea
B detrend the data
B model each rate in terms of the previous year’s one
B provides an alternative route: given m’s, transform, model,

estimate and forecast the improvement rates, transform
back
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Improvement Rates
• suppress the population index i here; define for

t = t0 + 1, . . . , t0 + T − 1 (T − 1 calendar years) the
relative improvement rates (Haberman and Renshaw [12])

zx,t =
mx,t−1 − mx,t

1
2(mx,t−1 + mx,t)

= 2
1− mx,t

mx,t−1

1 + mx,t

mx,t−1

• note that
B given z, recover m

mx,t = mx,t−1
2− zx,t

2 + zx,t

B z is the (discrete version of the) time derivative of m

zx,t ≈
1

mx,t

∂mx,t

∂t
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. . . Improvement Rates

1975 1985 1995 2005

−
10

0
5

10
15

20

age 20

t

z x
,t

1975 1985 1995 2005

−
10

−
5

0
5

10

age 40

t

z x
,t

1975 1985 1995 2005

−
10

−
5

0
5

10
15

age 60

t

z x
,t

1975 1985 1995 2005

−
15

−
5

0
5

10

age 80

t

z x
,t

16



. . . Improvement Rates

• Assume zi
x,t are realizations of iid rv Zi

x,t with

Zi
x,t ∼ N(ηi

x,t, σi)

• similarly to death rates

ηi
x,t =

L∑
j=1

βi
x,jkt,j

• note that there is no ‘time-average’ αi
x term
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. . . Improvement Rates

• I1
ηi

x,t = βi
x,1 ki

t,1 + βi
x,2 ki

t,2

• I2
ηi

x,t = βi
x,1 kt,1 + βi

x,2 ki
t,2

• I3
ηi

x,t = βi
x ki

t

• I4 — J1, J2, . . . , Jg partition of {1, . . . , I} (I > 2); for
i ∈ Jh

ηi
x,t = βi

x kh
t

• I5
ηi

x,t = βi
x kt

• models are nested: I5 ⊂ I4 ⊂ I3 ⊂ I2 ⊂ I1
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Application

• use mortality data from I = 18 Italian regions
• ages 20− 89 (X = 70)
• years 1974-2008, use 1974-1999 (T = 26) for estimation,

2000-2008 (9 yr) for forecasting
• maximize likelihood

B P models:

l = K +
∑
x,t,i

(
di

x,t log mi
x,t − ETRi

x,t mi
x,t
)

B I models:

l = −1
2

∑
x,t,i

(
log(2πσ2

i ) +
(zi

x,t − ηi
x,t)

2

σ2
i

)
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Comparison - Goodness of Fit

• AIC = 2(np− l∗), AICc = AIC + 2np(np+1)
nd−np−1 ,

BIC = np log(nd)− 2l∗ (l∗ = maximized likelihood, np =
number of estimable parameters, nd = number of data)

AIC AICc BIC
1st P2 I1 P2 I1 P5 I2
2nd P1 I2 P4 I2 P4 I3
3rd P4 I5 P3 I3 P2 I5
4th P3 I3 P1 I4 P3 I4
5th P5 I4 P5 I5 P1 I1
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Forecast

• if (ki
t,j) in P is modelled using a VARIMA process, then

the corresponding (ki
t,j) in I should be modelled using a

VARMA process
• in the application, we use

B a multivariate random walk with drift for P , where
appropriate

B a VAR(1) for I, where appropriate

21



Forecast

• if (ki
t,j) in P is modelled using a VARIMA process, then

the corresponding (ki
t,j) in I should be modelled using a

VARMA process
• in the application, we use

B a multivariate random walk with drift for P , where
appropriate

B a VAR(1) for I, where appropriate

21



Comparison - Forecast

• Compare truncated expected cohort residual lifetimes
(MAPE in % across all regions)

P1 P2 P3 P4 P5
ecohort

60:9
0.06 0.11 0.12 0.18 0.50

ecohort
70:9

0.11 0.20 0.20 0.21 0.88
ecohort

80:9
0.29 0.43 0.38 0.45 1.46

I1 I2 I3 I4 I5
ecohort

60:9
0.21 0.24 0.21 0.16 0.19

ecohort
70:9

0.39 0.24 0.39 0.27 0.26
ecohort

80:9
0.64 0.75 0.72 0.74 0.72
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Conclusion

• in terms of goodness of fit,
B when modelling death rates, more elaborate models seems

to be preferable
B however, when more weight is put on the number of

parameters, the ranking is reverted
B when modelling improvement rates, more complex models

are at advantage

• in terms of out of sample forecast
B when targeting death rates, again more elaborate models

provide better forecast
B when targeting improvement rates, simpler models are as

good as elaborate ones
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Thanks for Your attention!

24


	Introduction

