Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business

Michal Pešta

Charles University in Prague Faculty of Mathematics and Physics

Introduction — 2 | 30

Overview

- ▶ Motivated by claims reserving in non-life insurance
- ▶ Joint work with Ostap Okhrin (HU Berlin)
- ► Triangular data models
- ▶ published in *Insurance: Mathematics and Economics*, 56 (May 2014): 28-37.

Data structure — 3 | 30

Triangular data

- n copies of stochastic process
- ▶ The **first** realization consists of *n* observations
- ► The **last** one has only one observation

CLS and copulae in claims reserving

Main aims — 4 | 30

Terminology and goals

- ▶ $Y_{i,j}$... **cumulative payments** in origin year i after j development periods (accounting year i + j)
- ▶ n ... current year corresponds to the most recent accident year and development period
- ► Our data history consists of **right-angled isosceles triangles** $Y_{i,j}$, where $i + j \le n + 1$
- ▶ **Predict** $Y_{i,n}$ and $R_i = Y_{i,n} Y_{i,n+1-i}$ (claims reserve)
- **Estimate distribution** of the reserves

Conditional mean and variance (CMV) model

► CMV model

$$Y_{i,j} = \mu(Y_{i,j-1}, \boldsymbol{\alpha}, j) + \sigma(Y_{i,j-1}, \boldsymbol{\beta}, j) \varepsilon_{i,j}(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

- \triangleright α and β are unknown parameters, which dimensions do not depend on *n*
- \triangleright *μ* is a continuous function in **α**
- $ightharpoonup \sigma$ is a positive and continuous function in *β*
- ► Errors $ε_{i,j}(\alpha, \beta)$

CMV model — 6 | 30

CMV model's errors

- ▶ Disturbances $\{\varepsilon_{i,j}(\alpha, \beta)\}_{j=1}^{n+1-i}$ are independent sample copies of a stationary first-order Markov process for all i
- ▶ All $\varepsilon_{i,j}(\alpha, \beta)$ have the **common true invariant distribution** $G_{\alpha,\beta}$ which is absolutely continuous with respect to Lebesgue measure on the real line
- ► Filtration $\mathcal{F}_{i,j} = \sigma(Y_{k,l} : l \le j, k \le i+1-j)$ denotes the information set generated by that trapezoid

$$\begin{aligned} \mathsf{E}[\varepsilon_{i,j}(\pmb{\alpha},\pmb{\beta})|\mathcal{F}_{i,j-1}] &= 0\\ \mathsf{var}[\varepsilon_{i,j}(\pmb{\alpha},\pmb{\beta})|\mathcal{F}_{i,j-1}] &= s(\pmb{\alpha},\pmb{\beta}) \end{aligned}$$

Properties of the CMV model

- ▶ Unknown true values $[\alpha^{*\top}, \beta^{*\top}]^{\top}$ of parameters $[\alpha^{\top}, \beta^{\top}]^{\top}$ set (due to identifiability purposes): $s(\alpha^*, \beta^*) = 1$
- ▶ Model's name come from the fact that

$$\begin{split} & \mathsf{E}[Y_{i,j}|\mathcal{F}_{i,j-1}] = \mu(Y_{i,j-1},\pmb{\alpha},j) \\ & \mathsf{var}[Y_{i,j}|\mathcal{F}_{i,j-1}] = \sigma^2(Y_{i,j-1},\pmb{\beta},j)s(\pmb{\alpha},\pmb{\beta}) \end{split}$$

- ► Conditional mean models: types of ARMA models, vector autoregressions, linear and nonlinear regressions, ...
- ➤ Conditional variance models: ARCH and any of its numerous parametric extensions (GARCH, EGARCH, GJR-GARCH, etc.), stochastic volatility models, ...

CMV model — 8 | 30

Candidates for the mean and variance function

- ► From the nature of data: $Y_{i,j} \nearrow C_i \in \mathbb{R}^+$ almost surely as $j \to \infty$, $\forall i$ (stabilizing property)
- ► One may propose, e.g.,

$$\mu(Y_{i,j-1}, \boldsymbol{\alpha}, j) = \eta(\boldsymbol{\alpha}, j) Y_{i,j-1}$$

$$\sigma(Y_{i,j-1}, \boldsymbol{\beta}, j) = \nu(\boldsymbol{\beta}, j) \sqrt{Y_{i,j-1}}$$

- ▶ $\eta(\alpha, j)$ should be **decreasing** in j with **limit** 1 as $j \to \infty$
- ▶ $\nu(\beta, j)$ should be **decreasing** in j with **limit** 0 as $j \to \infty$

CMV model — 9 | 30

Dependence modeling

- Since the mean and variance trends are removed by the CMV model, the rest of the relationship among claim amounts Y_{i,j} can be additionally captured by modeling dependent errors
- $\{\varepsilon_{i,j}(\alpha,\beta)\}_{j=1}^{n+1-i}$ are independent sample copies of a **stationary first-order Markov process** for all i generated from $(G_{\alpha,\beta}(\cdot),C(\cdot,\cdot;\gamma))$
- ▶ $C(\cdot,\cdot;\gamma)$ is the **true parametric copula** for $[\varepsilon_{i,j-1}(\alpha,\beta),\varepsilon_{i,j}(\alpha,\beta)]$, which is given and fixed up to unknown parameter γ

CMV model — 10 | 30

Copula-based model

- ▶ It is believed that there exist a kind of **information overlap** between the claims from consecutive development periods
- ▶ Joint **bivariate distribution** of $[\varepsilon_{i,j-1}(\alpha, \beta), \varepsilon_{i,j}(\alpha, \beta)]$ has distribution function

$$H(e_1,e_2) = C(G_{\alpha,\beta}(e_1),G_{\alpha,\beta}(e_2);\gamma)$$

► Conditional copula density can be derived as

$$h(e_2|e_1) = g_{\alpha,\beta}(e_2)c(G_{\alpha,\beta}(e_1), G_{\alpha,\beta}(e_2); \gamma)$$

where *c* is the **copula density** and $g_{\alpha,\beta}$ is the **marginal density** corresponding to $G_{\alpha,\beta}$

► Play an important role in "making" the dependent errors conditionally independent

Parameter estimation

- CMV model with copula assume three vector parameters to be estimated
- ► Estimation process consists of **two stages**
- ▶ In the first one, mean and variance parameters α and β are estimated in a **distribution-free** fashion, since no specific distributional assumptions are proposed nor required for the claims
- ▶ The second stage concerns estimation of the dependence structure, mainly the copula parameter γ , in a **likelihood** based way

Conditional least squares (CLS)

Denote

$$M_n(\alpha, \beta) = \frac{1}{n-1} \sum_{j=2}^n \frac{1}{n+1-j} \sum_{i=1}^{n+1-j} \frac{1}{\sum_{i=1}^n \frac{1}{n+1-j}} \frac{\sum_{i=1}^n \frac{1}{\sum_{j=2}^n \frac{1}{n+1-j}} \frac{1}{\sum_{i=1}^n \frac{1}{n+1-j}} \frac{1}{\sum_{i=1}^n \frac{1}{n+1-j}} \sum_{i=1}^n \frac{1}{\sum_{j=2}^n \frac{1}{n+1-j}} \frac{1}{\sum_{i=1}^n \frac{1}{n+1-j}} \frac{$$

CLS and copulae in claims reserving

CLS estimates

► CLS estimate of the **mean parameter** α for a fixed value of parameter β ∈ Θ ² is defined as

$$\widehat{\boldsymbol{\alpha}}(\boldsymbol{\beta}) = \arg\min_{\boldsymbol{\alpha} \in \boldsymbol{\Theta}_1} M_n(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

and CLS estimate of the **variance parameter** β for a fixed value of parameter $\alpha \in \Theta_1$ is defined as

$$\widehat{\boldsymbol{\beta}}(\boldsymbol{\alpha}) = \arg\min_{\boldsymbol{\beta} \in \Theta_2} V_n(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

► Computationally not feasible to find the global minimum of M_n and V_n with respect to $[\alpha^\top, \beta^\top]^\top$ simultaneously

Consistency

▶ Under regularity conditions

$$\widehat{\alpha}(\beta) \xrightarrow[n \to \infty]{P} \alpha^*(\beta), \forall \beta; \quad \widehat{\beta}(\alpha) \xrightarrow[n \to \infty]{P} \beta^*(\alpha), \forall \alpha$$

► Mixingales are to mixing processes as martingale differences are to independent processes

Iterative CLS

▶ What is the connection between the true unknown parameter values α^* and β^* of the CMV model and true unknown parameter values $\alpha^*(\beta)$ and $\beta^*(\alpha)$?

$$\left[egin{array}{c} \widehat{m{lpha}}(m{eta}^*) \ \widehat{m{eta}}(m{lpha}^*) \end{array}
ight] \stackrel{ ext{P}}{\longrightarrow} \left[egin{array}{c} m{lpha}^* \ m{eta}^* \end{array}
ight]$$

- ► **Iteratively estimate** α given the fixed value of β and, consequently, estimate β given the fixed value of α (obtained from previous step)
- ▶ **Repeat in turns** until almost no change in consecutive estimates of $[\alpha^{\top}, \beta^{\top}]^{\top}$

Estimation of dependence structure

► Estimate the unknown marginal distribution function $G_{\alpha,\beta}$ of CMV model errors $\varepsilon_{i,j}(\alpha,\beta)$ non-parametrically by the **empirical distribution function**

$$\widehat{G}_n(e) = \frac{1}{n(n-1)/2 + 1} \sum_{i=1}^{n-1} \sum_{j=2}^{n+1-i} \mathcal{I}\{\widehat{\varepsilon}_{i,j}(\widehat{\alpha}, \widehat{\beta}) \le e\}$$

of the fitted residuals

$$\widehat{\varepsilon}_{i,j}(\widehat{\boldsymbol{\alpha}},\widehat{\boldsymbol{\beta}}) = \frac{Y_{i,j} - \mu(Y_{i,j-1},\widehat{\boldsymbol{\alpha}},j)}{\sigma(Y_{i,j-1},\widehat{\boldsymbol{\beta}},j)}$$

Likelihood for copula

Full log-likelihood for copula parameter γ

$$\mathcal{L}(\gamma) = \sum_{i=1}^{n-2} \sum_{j=2}^{n+1-i} \log g_{\alpha,\beta}(\varepsilon_{i,j}(\alpha,\beta)) + \sum_{i=1}^{n-2} \sum_{j=3}^{n+1-i} \log c(G_{\alpha,\beta}(\varepsilon_{i,j-1}(\alpha,\beta)), G_{\alpha,\beta}(\varepsilon_{i,j}(\alpha,\beta)); \gamma)$$

Psuedo (quasi) likelihood

▶ Ignoring the first term in $\mathcal{L}(\gamma)$ and replacing ε 's and $G_{\alpha,\beta}$ by their estimated counterparts $\hat{\varepsilon}$'s and \hat{G}_n , parameter γ can be estimated by the so-called canonical maximum likelihood, i.e., maximizing the partial (pseudo) log-likelihood

$$\widehat{\gamma} = \arg \max_{\gamma} \widetilde{\mathcal{L}}(\gamma)$$

$$\widetilde{\mathcal{L}}(\gamma) = \sum_{i=1}^{n-2} \sum_{j=3}^{n+1-i} \log c(\widehat{G}_n(\widehat{\varepsilon}_{i,j-1}(\widehat{\alpha}, \widehat{\beta})), \widehat{G}_n(\widehat{\varepsilon}_{i,j}(\widehat{\alpha}, \widehat{\beta})); \gamma)$$

Prediction

▶ Predictor for reserve $R_i^{(n)}$ can be defined as

$$\widehat{R}_{i}^{(n)} = \widehat{Y}_{i,n} - Y_{i,n+1-i}$$

▶ Prediction of unobserved claims may be done in a **telescopic** way based on the CMV model formulation: start with the diagonal element $Y_{i,n+1-i}$ and predict $Y_{i,j}$, j > n+1-i stepwise in each row

$$\begin{split} \widehat{Y}_{i,j} &= Y_{i,j}, \quad i+j \leq n+1 \\ \widehat{Y}_{i,j} &= \mu(\widehat{Y}_{i,j-1}, \widehat{\alpha}, j) + \sigma(\widehat{Y}_{i,j-1}, \widehat{\beta}, j) \widetilde{\epsilon}_j, \quad i+j > n+1 \end{split}$$

CLS and copulae in claims reserving

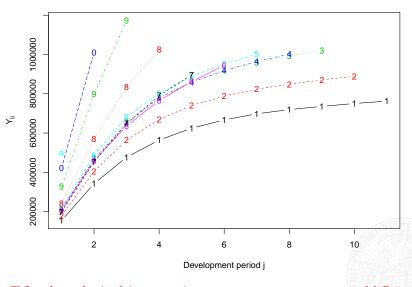
Semiparametric bootstrap

- ▶ Errors $\tilde{\varepsilon}_i$ are simulated from the fitted residuals
- ► Takes **advantage** of the fact that $\varepsilon_{i,j}(\alpha, \beta) = G_{\alpha,\beta}^{-1}(X_j)$ for all i (due to the independent rows), where $\{X_j\}_{j=2}^n$ is a stationary first-order Markov process with the copula $C(x_1, x_2; \gamma)$ being the joint distribution of $[X_{j-1}, X_j]$

Resampling algorithm

- ► Generate n-1 independent Un(0,1) rvs $\{X_j\}_{j=2}^n$
- ightharpoonup Repeat $b = 1, \dots, B$
- \blacktriangleright $_{(b)}U_2 \leftarrow X_2$
- $\blacktriangleright _{(b)}\widehat{\varepsilon}_2 \leftarrow \widehat{G}_n^-(_{(b)}U_2)$
- $D_{(b)}U_j \leftarrow C_{2|1}^{-1}(X_j|_{(b)}U_{j-1};\widehat{\gamma}), j=3,\ldots,n$
- \blacktriangleright $(b)\widehat{\varepsilon}_j \leftarrow \widehat{G}_n^-(b)U_j, j = 3, \ldots, n$
- ► Center bootstrap residuals $(b)\widetilde{\varepsilon}_j \leftarrow (b)\widehat{\varepsilon}_j \frac{1}{n-1}\sum_{l=2}^n (b)\widehat{\varepsilon}_l$
- $\triangleright _{(b)}\widehat{Y}_{i,n+1-j} \leftarrow Y_{i,n+1-i}$
- $\blacktriangleright_{(b)} \widehat{Y}_{i,j} \leftarrow \mu({}_{(b)} \widehat{Y}_{i,j-1}, \widehat{\boldsymbol{\alpha}}, j) + \sigma({}_{(b)} \widehat{Y}_{i,j-1}, \widehat{\boldsymbol{\beta}}, j)_{(b)} \widetilde{\varepsilon}_j,$ $j = n+2-i, \dots, n$
- $\blacktriangleright_{(b)}\widehat{R}_i^{(n)} \leftarrow_{(b)}\widehat{Y}_{i,n} Y_{i,n+1-i}$

CLS and copulae in claims reserving



CLS and copulae in claims reserving

Real data

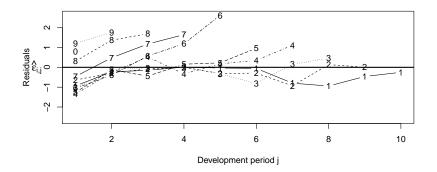
▶ Data set from Zehnwirth and Barnett (2000)

$$\mu(Y_{i,j-1}, \boldsymbol{\alpha}, j) = \left(1 + \alpha_1 \alpha_2 j^{-1-\alpha_2} \exp\left\{\alpha_1 j^{-\alpha_2}\right\}\right) Y_{i,j-1}$$

$$\sigma(Y_{i,j-1}, \boldsymbol{\beta}, j) = \beta_1 \exp\left\{-\beta_2 j\right\} \sqrt{Y_{i,j-1}}$$

► CLS estimates:

$$\widehat{\alpha}_1 = 2.033, \, \widehat{\alpha}_2 = 1.106, \, \widehat{\beta}_1 = 109.8, \, \widehat{\beta}_2 = 0.4053$$



➤ Still some slight **pattern** (trend) not captured by mean and variance parametric part

CLS and copulae in claims reserving

Copula godness-of-fit

- ► Kendall τ for the pairs of consecutive residuals $\{[\widehat{\varepsilon}_{i,j-1}(\widehat{\alpha},\widehat{\beta}),\widehat{\varepsilon}_{i,j}(\widehat{\alpha},\widehat{\beta})]\}_{i=1,j=3}^{n-2,n+1-i}$ equals 0.43, which indicates at least mild dependence
- ► Three Archimedean copulae (Clayton, Frank, and Gumbel) together with Gaussian and Student *t*₅-copula considered
- ► $S_n^{(C)}$ goodness-of-fit test proposed by Genest et al. (2009)
- ► **Gumbel copula** ($\hat{\gamma} = 1.776$) was chosen
- Exhibits strong right tail dependence and relatively weak left tail dependence
- ▶ Transformed residuals (by the residuals' marginal edf \widehat{G}_n ; having uniform margins) seem to be strongly correlated at high values but less correlated at low values

CLS and copulae in claims reserving

 $\hat{G}_n(\hat{\epsilon}_{i,i-1})$

M. Pešta

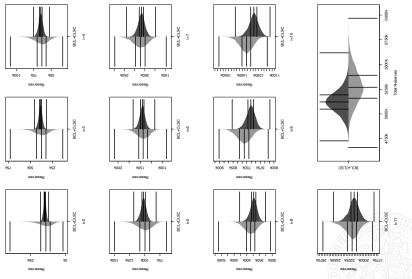
Un[0,1]

26 | 30

Results

- ▶ Benchmark: traditional bootstrapped chain ladder (BCL)
- ▶ **Disadvantages**, which can be overcome by our approach:
 - ▶ Number of parameters depending on the sample size
 - Some parameters estimated by just ratio of two numbers (yielding zero sample variance)
 - Questionable consistency of the estimates
 - ▶ Non-realistic assumption of independence of the residuals
- Our approach:
 - ▶ Slightly smaller predictions of reserves
 - ▶ But even more important is that the estimates of the reserves' distribution are less volatile

Reserves — 28 | 30



CLS and copulae in claims reserving

Conclusions — 29 | 30

Summary

- ► Conditional mean and variance (CMV) time series model for triangular data with innovations being a stationary first-order Markov process
- ► Framework is demonstrated to be suitable for stochastic claims reserving in general insurance
- Very flexible modeling approach, relatively smaller number of model parameters not depending on the number of development periods, and time series innovations not considered as independent
- ▶ Increase in precision of the claims reserves' prediction
- ► Theoretical **justification** of the proposed approached shown

Thank you!

Michal.Pesta@mff.cuni.cz