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Energy market

I We consider

I electricity spot S(t)
I forward and futures contracts on power

f (t,T ) = EQ [S(T ) |Ft ]

I plain vanilla call and put options on the forward and futures

C(t, τ,T ) = EQ [max(f (τ,T )− K , 0) |Ft ] .

I Fix a pricing measure Q, state dynamics under this pricing measure

I Set r = 0
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I Consider options on forwards in energy markets
I Two models for the Spot (underlying of the forward)

1. Black 76 framework
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Figure: Phelix base load spot prices from 02.01.2006 until 19.10.2008
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I Consider options on forwards in energy markets
I Two models for the Spot (underlying of the forward)

1. Black 76 framework
2. Two factor model

I Quantify the difference in the corresponding option prices

I Show that big, fast mean reverting spikes do not influence the
option price significantly

I Argumentation for Black 76 formula
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Intuition: Delivery Period

I Energy markets: futures contracts delivering the underlying energy
over a specified period

I short-term shocks in the spot may vanish in the futures dynamics
due to smoothing by the delivery period.

I short-term factor of the forward price evolution inherited from the
spot might be insignificant in the option price
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Outline

I Two factor model for the spot and implied forward prices

I Option price formula and quantification of the pricing error

I Conclusion
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Two Factor Spot Price Model

exponential 2-factor model after Gibson and Schwartz [4]

S(t) = Λ(t) exp(X (t) + Y (t)) .

I deterministic seasonality function Λ(t) : R+ → R+

I non-stationary long-term factor X is a drifted Brownian motion

dX (t) = µ dt + σ dB(t) ,

with B being a Brownian motion and µ, σ > 0 constants.

I stationary short-term factor Y is given by the Ornstein-Uhlenbeck
dynamics

dY (t) = −βY (t) dt + dL(t) ,

where L is a pure jump Lévy process and β > 0 a constant.
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Notiation and Assumption on L

Notation

I Lévy measure `

I logmoment generating function

φ(θ) = lnE[exp(θL(1))] ,

Assumption

I assume that the Lévy process has finite exponential moments up to order
3
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Two Factor Model for the Spot
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Figure: Deseasonalised EEX electricity spot prices from 02.01.2006 -
19.10.2008
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Forward Price dynamics

Proposition 1

The dynamics of the process t 7→ f (t,T ) for t ≤ T is

df (t,T )

f (t−,T )
= σ dB(t) +

∫
R

{
exp

(
ze−β(T−t)

)
− 1
}
Ñ(dz , dt) ,

where f (t−,T ) denotes the left-limit of f (t,T ).
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Pricing Call Options on Forwards

The no-arbitrage price of a call option at time t ≤ τ written on a forward
contract with price dynamics given as in Prop. 1, is defined by

C(t, τ,T , x) = EQ [max(f (τ,T )− K , 0) | f (t,T ) = x ] .

τ ≤ T exercise time of the call option, with a strike price K > 0.

I analyse this price in relation to the Black-76 formula!
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Black 76 Formula

Proposition 2
Suppose the forward price dynamics is a geometric Brownian motion

df (t,T )

f (t,T )
= σ dB(t) .

Then the price at time t of a call option with strike K and exercise time
t ≤ τ ≤ T, is given by CB76(t, f (t,T )) with

CB76(t, τ,T , x) = xΦ(d1(x))− KΦ(d2(x))

for Φ being the cumulative standard normal distribution function, and

d1(x) = d2 + σ
√
τ − t

d2(x) =
ln
(

x
K

)
− 1

2
σ2(τ − t)

σ
√
τ − t

.
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Option Price with Underlying Two Factor Model

Proposition 3
The price of a call option on the forward given in Prop. 1 is

C(t, τ,T , x)

= xE
[

exp

(∫ τ

t
e
−β(T−s) dL(s)−

∫ τ

t
φ(e−β(T−s)) ds

)
Φ

(
d1

(
x,

∫ τ

t
e
−β(T−s) dL(s)

))]
− KE

[
Φ

(
d2

(
x,

∫ τ

t
e
−β(T−s) dL(s)

))]

where φ(x) is the logarithmic moment generating function of L(1) and

d1(x, v) = d2(x, v) + σ
√
τ − t

d2(x, v) =
ln
(

x
K

)
+ v −

∫ τ
t φ(e−β(T−s)) ds − 1

2
σ2(τ − t)

σ
√
τ − t

.

Maren Schmeck University of Cologne

Pricing and Hedging Options in Energy Markets by Black-76



Two factor model Pricing Options by B76 Conclusion

Pricing Call Options on Forwards

Theorem 4
Suppose that τ ≤ T. Then it holds that

sup
x≥0
|C(t, τ,T , x)− CB76(t, τ,T , x)| ≤ ((c3.6 + c3.7)x + (c3.4 + c3.5)K) e−β(T−τ) ,

for constants

c3.4 =
1√
2πσ

(
φ′′(0) +

1

β
(φ′(0))2

)
,

c3.5 =
1√

2πβσ

(∫
|z|<1

z2 `(dz) +

∫
|z|≥1

e2|z| `(dz)

)
,

c3.6 =
1√
2πσ

(
1

2

√
β +

1√
β

(
e1

∫
|z|<1

z2 `(dz) +

∫
|z|≥1

e3|z| `(dz)

))
,

c3.7 = c3.5 .
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Forward - Delivery Period

I Typically: forwards delivering the underlying energy over a delivery period
[T1,T2]

I forward price defined as expected average spot over the delivery period:
no analytical closed form solution when the spot model is exponential

I choose as delivery time some point in the delivery period, e.g. mid-point
T = (T1 + T2)/2
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Pricing Call Options on Forwards

I electricity markets: many options have exercise time equal to
the beginning of delivery T1 of the underlying forward, e.g.
τ = T1.

I relatively long delivery period: τ is relatively far from T ∗.

I for a reasonably strong mean reversion β of the spikes,
options on forwards in electricity markets can be priced with a
high degree of accuracy by the Black-76 formula.
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Numerical example - Logarithmic pricing error
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Figure: Difference of the option price to the Black-76 on log-scale. The
solid line is a fitted line with slope −β.
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Sensitivity with respect to β
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Figure: Relative pricing error in % as a function of the half life of the
spike component with 5 spikes on average during a month.T = 25
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Quadratic Hedging of Call Options on Forwards

I determine the quadratic hedging strategy for our market
model

I quadratic hedge converges uniformly to the simple
delta-hedging strategy

I rate of convergence same as for the price
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Conclusion

I Based on a two-factor spot price model we show that
I option prices converge exponentially to the Black-76 price in

terms of
I the speed of mean-reversion of the stationary factor in the

spot price
I the time left to maturity of the forward from the exercise

time of the call.

I Combining
I Approximation the delivery period by its midpoint
I typically high speed of mean-reversion

call options on electricity and gas forwards may be priced
reasonably accurately by the Black-76 formula in many cases.

I Analogous results for quadratic hedging

Maren Schmeck University of Cologne

Pricing and Hedging Options in Energy Markets by Black-76



Two factor model Pricing Options by B76 Conclusion

How many mean-reverting components?
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Figure: Empirical and fitted autocorrelation function of a filtered Y in an
arithmetic model. β = 0.359
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Empirical Analysis - Illiquidity Issue

Figure: Phelix Option, EEX
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Thank you for your attention!
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