Pricing Currency Derivatives with Markov-modulated Lévy Dynamics

Anatoliy Swishchuk

University of Calgary, Canada

8th Conference in Actuarial Science & Finance on Samos
May 29 - June 1, 2014
Abstract
Markov-modulated Lévy Processes
Markov-Modulated Lévy Dynamics: Main Results
Example: Double Exponential Distribution
Valuation of European Style FX Options
Numerical Simulations
Bo et al. (2010) Results
Conclusions

Outline

1. Abstract
2. Markov-modulated Lévy Processes
3. Markov-Modulated Lévy Dynamics: Main Results
4. Example: Double Exponential Distribution
5. Valuation of European Style FX Options
6. Numerical Simulations
7. Bo et al. (2010) Results
8. Conclusions
This talk introduces dynamic models for the spot foreign exchange rate with capturing both the rare events and the time-inhomogeneity in the fluctuating currency market. For the rare events, we use a Lévy process, and for the time-inhomogeneity in the market dynamics, we indicate the strong dependence of the domestic/foreign interest rates, the appreciation rate and the volatility of the foreign currency on the time-varying sovereign ratings in the currency market. The time-varying ratings are formulated by a continuous-time finite-state Markov chain.
Abstract

We study the pricing of some currency options adopting a so-called regime-switching Esscher transform to identify a risk-neutral martingale measure. By determining the regime-switching Esscher parameters we then get an integral expression on the prices of European-style currency options. Finally, numerical illustrations are presented as well.
Finite state Markov chain

Let (Ω, \mathcal{F}, P) be a complete probability space with a probability measure P. Consider a continuous-time, finite-state Markov chain $\xi = \{\xi_t\}_{0 \leq t \leq T}$ on (Ω, \mathcal{F}, P) with a state space \mathcal{S}, the set of unit vectors $(e_1, \cdots, e_n) \in \mathbb{R}^n$ with a rate matrix Π. The dynamics of the chain are given by

$$\xi_t = \xi_0 + \int_0^t \Pi \xi_u du + M_t \in \mathbb{R}^n,$$

where $M = \{M_t, t \geq 0\}$ is a \mathbb{R}^n-valued martingale with respect to $(\mathcal{F}_t^\xi)_{0 \leq t \leq T}$, the P-augmentation of the natural filtration, generated by the Markov chain ξ.

A. Swishchuk, M. Tertychnyi & R. Elliott
Pricing Currency Derivatives with Markov-modulated Lévy Dynamics
Modeling a Spot FX Rate

A Markov-modulated Lévy dynamics, which models the dynamics of the spot FX rate, is given by the following SDE:

\[dS_t = S_{t-} \left(\mu_t dt + \sigma_t dW_t + (e^{Z_t} - 1) dN_t \right). \]

Here \(\mu_t \) is drift parameter; \(W_t \) is a Brownian motion, \(\sigma_t \) is the volatility; \(N_t \) is a Poisson Process with intensity \(\lambda_t \), the jump size is controlled by \(Z_t \). The distribution of \(Z_t \) has a density \(\nu(x), x \in \mathbb{R} \). All sources of randomness are independent.
The parameters μ_t, σ_t, λ_t are modeled using the finite state Markov chain

\[
\begin{align*}
\mu_t &:= < \mu, \xi_t >, \mu \in \mathbb{R}^n; \\
\sigma_t &:= < \sigma, \xi_t >, \sigma \in \mathbb{R}_+^n; \\
\lambda_t &:= < \lambda, \xi_t >, \lambda \in \mathbb{R}_+^n.
\end{align*}
\]
Solution of SDE Running the Dynamics of FX Rate

The solution of (2) is \(S_t = S_0 e^{L_t} \), (where \(S_0 \) is the spot FX rate at time \(t = 0 \)). Here \(L_t \) is given by the formula

\[
L_t = \int_0^t (\mu_s - 1/2\sigma_s^2)ds + \int_0^t \sigma_s dW_s + \int_0^t Z_s dN_s.
\]
Discounted Spot FX Rate

Domestic and foreign interest rates \((r^d_t)_{0 \leq t \leq T}, (r^f_t)_{0 \leq t \leq T}\) are defined also by finite state Markov chain \((\xi_t)_{0 \leq t \leq T}\):

\[
 r^d_t = \langle r^d, \xi_t \rangle, r^d \in \mathbb{R}^n_+,
\]
\[
 r^f_t = \langle r^f, \xi_t \rangle, r^f \in \mathbb{R}^n_+.
\]

Discounted spot FX rate:

\[
 S^D_t = \exp \left(\int_0^t (r^f_s - r^d_s) ds \right) S_t, \; 0 \leq t \leq T. \tag{5}
\]
Using (2), Itô’s formula with jumps we derive SDE for discounted spot FX rate

\[
dS^D_t = S^D_t (r^d_t - r^f_t + \mu_t)dt + S^D_t \sigma_t dW_t + S^D_t (e^{Z_t} - 1)dN_t.
\]
Log Spot FX Rate

Log spot FX rate

\[Y_t = \log \left(\frac{S_t^D}{S_0} \right) \]

Using Itô’s formula with jumps

\[Y_t = C_t + J_t, \]

where \(C_t, J_t \) are continuous and jump parts of \(Y_t \).

\[C_t = \int_0^t \left(r^d_s - r^f_s + \mu_s \right) ds + \int_0^t \sigma_s dW_s, \tag{7} \]

\[J_t = \int_0^t Z_s^- dN_s \tag{8} \]
Let \((\mathcal{F}_t^Y)_{0 \leq t \leq T}\) denote the \(\mathbb{P}\)-augmentation of the natural filtration, generated by \(Y\). For each \(t \in [0, T]\) set \(\mathcal{H}_t = \mathcal{F}_t^Y \vee \mathcal{F}_T^\xi\). Let us also define two families of regime switching parameters \((\theta^c_s)_{0 \leq s \leq T}, (\theta^J_s)_{0 \leq s \leq T}\):

\[
\theta^m_t = \langle \theta^m, \xi_t \rangle,
\]

\[
\theta^m = (\theta^m_1, \ldots, \theta^m_n) \subset \mathbb{R}^n,
\]

\[
m = \{c, J\}.
\]
Esscher Transform

Define a random Esscher transform $\mathbb{Q}^{\theta^c, \theta^J} \sim \mathbb{P}$ on \mathcal{H}_t using these families of parameters $(\theta^c_s)_{0 \leq s \leq T}$, $(\theta^J_s)_{0 \leq s \leq T}$

$$L^{\theta^c, \theta^J}_t = \left. \frac{d\mathbb{Q}^{\theta^c, \theta^J}}{d\mathbb{P}} \right|_{\mathcal{H}_t} =: \frac{\exp \left(\int_0^t \theta^c_s dC_s + \int_0^t \theta^J_s dJ_s \right)}{\mathbb{E} \left[\exp \left(\int_0^t \theta^c_s dC_s + \int_0^t \theta^J_s dJ_s \right) \mid \mathcal{F}_t \right]}. \quad (9)$$
The density $L_{t}^{\theta_{c},\theta_{J}}$ of Esscher transform defined in (9) is:

$$L_{t}^{\theta_{c},\theta_{J}} = \exp\left(\int_{0}^{t} \theta_{c}^{c} \sigma_{s} dW_{s} - 1/2 \int_{0}^{t} (\theta_{c}^{c} \sigma_{s})^2 ds\right) \times$$

$$\exp\left(\int_{0}^{t} \theta_{J}^{J} Z_{s} dN_{s} - \int_{0}^{t} \lambda_{s} \left(\int_{\mathbb{R}} e^{\theta_{J}^{J} x} \nu(dx) - 1\right) ds\right).$$

In addition, the random Esscher transform density $L_{t}^{\theta_{c},\theta_{J}}$ is an exponential $(\mathcal{H}_{t})_{0 \leq t \leq T}$ martingale and satisfies the following SDE:

$$\frac{dL_{t}^{\theta_{c},\theta_{J}}}{L_{t-}^{\theta_{c},\theta_{J}}} = \theta_{c}^{c} \sigma_{t} dW_{t} + (e^{\theta_{J}^{J} Z_{t} - 1}) dN_{t} - \lambda_{t} \left(\int_{\mathbb{R}} e^{\theta_{J}^{J} x} \nu(dx) - 1\right) dt.$$
Martingale Condition for Discounted Spot FX Rate

Martingale condition for discounted spot FX rate S_t^D

$$\mathbb{E}^{\theta_c,\theta^J}[S_t^D | \mathcal{H}_u] = S_u^D, \quad t \geq u. \quad (11)$$

To derive such a condition Bayes formula is used

$$\mathbb{E}^{\theta_c,\theta^J}[S_t^D | \mathcal{H}_u] = \frac{\mathbb{E}[L_t^{\theta_c,\theta^J} S_t^D | \mathcal{H}_u]}{\mathbb{E}[L_t^{\theta_c,\theta^J} | \mathcal{H}_u]} = \mathbb{E}\left[\frac{L_t^{\theta_c,\theta^J}}{L_u^{\theta_c,\theta^J}} S_t^D | \mathcal{H}_u\right] \quad (12)$$
Theorem

Let the random Esscher transform be defined by (9). Then the martingale condition (for S^D_t, see (12)) holds if and only if the Markov modulated parameters $(\theta^c_t, \theta^J_t, 0 \leq t \leq T)$ satisfy for all $0 \leq t \leq T$ the condition

$$r^f_t - r^d_t + \mu_t + \theta^c_t \sigma^2_t + \lambda^\theta_t^J k^\theta_t^J = 0. \tag{13}$$

Here the random Esscher transform intensity $\lambda^\theta_t^J$ of the Poisson Process and the mean percentage jump size $k^\theta_t^J$ are, respectively, given by

$$\lambda^\theta_t^J = \lambda_t \int_{\mathbb{R}} e^{\theta^J_s x} \nu(dx), \quad k^\theta_t^J = \frac{\int_{\mathbb{R}} e^{(\theta^J_t + 1) x} \nu(dx)}{\int_{\mathbb{R}} e^{\theta^J_t x} \nu(dx)} - 1, \tag{14}$$

as long as $\int_{\mathbb{R}} e^{\theta^J_t x} \nu(dx) < +\infty$, $\int_{\mathbb{R}} e^{(\theta^J_t + 1) x} \nu(dx) < +\infty$.

A. Swishchuk, M. Tertychnyi & R. Elliott

Pricing Currency Derivatives with Markov-modulated Lévy Dynamics
The new density of jumps $\tilde{\nu}$ is defined by the following formula

$$
\frac{\int_{\mathbb{R}} e^{(\theta_t J + 1)x} \nu(dx)}{\int_{\mathbb{R}} e^{\theta_t J x} \nu(dx)} = \int_{\mathbb{R}} e^{x \tilde{\nu}}(dx).
$$

(15)
Regime-switching parameters satisfying martingale condition for spot FX rate

\begin{align}
\theta_{t}^{c, *} &= \frac{r_{t}^{d} - r_{t}^{f} - \mu_{t}}{\sigma_{t}^{2}}, \quad (16) \\
\theta_{t}^{J, *} : \frac{\int_{\mathbb{R}} e^{(\theta_{t}^{J, *} + 1)x} \nu(dx)}{\int_{\mathbb{R}} e^{\theta_{t}^{J, *} x} \nu(dx)} &= 1. \quad (17)
\end{align}
Double Exponential Distribution

It is defined by the following formula of the density function

\[\nu(x) = p\theta_1 e^{-\theta_1 x} \mathbb{1}_{x \geq 0} + (1 - p)\theta_2 e^{\theta_2 x} \mathbb{1}_{x < 0}, \]

(18)

where \(\theta_1 > 1, \quad \theta_2 > 0. \)

The mean value of this distribution is

\[\text{mean}(\theta_1, \theta_2, p) = \frac{p}{\theta_1} - \frac{1 - p}{\theta_2}. \]

(19)

The variance of this distribution is

\[\text{var}(\theta_1, \theta_2, p) = \frac{2p}{\theta_1^2} + \frac{2(1 - p)}{\theta_2^2} - \left(\frac{p}{\theta_1} - \frac{1 - p}{\theta_2} \right)^2. \]

(20)
Regime-switching Parameters Satisfying Martingale Condition for Spot FX Rate

The family of regime switching Esscher transform parameters is defined by (16), (17). The parameter θ^J_t, (the first parameter θ^C_t has the same formula as in general case) is defined by (see (15))

$$\int_{\mathbb{R}} e^{(\theta^J_t + 1)x} \left(p \theta_1 e^{-\theta_1 x} \left| x \geq 0 \right. \right) + (1 - p) \theta_2 e^{\theta_2 x} \left| x < 0 \right. \right) dx = \left(21\right)$$

$$\int_{\mathbb{R}} e^{\theta^J_t x} \left(p \theta_1 e^{-\theta_1 x} \left| x \geq 0 \right. \right) + (1 - p) \theta_2 e^{\theta_2 x} \left| x < 0 \right. \right) dx.$$
Regime-switching Parameters Satisfying Martingale Condition for Spot FX Rate

We require an additional restriction for the convergence of the integrals in (21)

\[-\theta_2 < \theta^J_t < \theta_1.\]

(22)

If \(p\theta_1 - (1 - p)\theta_2 \neq 0\) we have two solutions and one of them satisfies restriction (22)

\[
\theta^J_t = -\frac{p\theta_1 + 2\theta_1 \theta_2 - (1 - p)\theta_2}{2(p\theta_1 - (1 - p)\theta_2)} \pm \]

(23)

\[
((p\theta_1 + 2\theta_1 \theta_2 - (1 - p)\theta_2)^2 - 4(p\theta_1 - (1 - p)\theta_2)(p\theta_1 \theta_2(\theta_1 + \theta_2) - \theta_2 \theta_1^2 + \theta_1 \theta_2))^{0.5}(2(p\theta_1 - (1 - p)\theta_2))^{-1}.
\]
The New Poisson Process Intensity and the New Mean Jump Size

Then the Poisson process intensity is

$$\lambda_{t}^{\theta,J} = \lambda_{t} \left(\frac{p\theta_{1}}{\theta_{1} - \theta_{t}} + \frac{(1-p)\theta_{2}}{\theta_{2} + \theta_{t}} \right).$$ \hspace{1cm} (24)

The new mean jump size is

$$k_{t}^{\theta,J} = 0$$ \hspace{1cm} (25)
The New Distribution of Jumps

If we proceed to a new risk-neutral measure Q we have a new density of jumps ν

$$\tilde{\nu}(x) = \tilde{p}\theta_1 e^{-\theta_1 x} I_{x \geq 0} + (1 - \tilde{p})\theta_2 e^{\theta_2 x} I_{x < 0}. \quad (26)$$
The New Distribution of Jumps

\[\tilde{p} = \frac{p\theta_1}{\theta_1 - \theta_i^J - 1} + \frac{(1-p)\theta_2}{\theta_2 + \theta_i^J + 1} - \frac{\theta_2}{\theta_2 + 1} \cdot \frac{\theta_1}{\theta_1 - 1} - \frac{\theta_2}{\theta_2 + 1} \]

(27)
We now proceed to the general formulas for European calls (see Merton (1976)). For the European call currency options with a strike price K and the time of expiration T the price at time zero is given by

$$\Pi_0(S, K, T, \xi) = \mathbb{E}^{\theta^c_*, \theta^J_*} \left[e^{-\int_0^T (r^d_s - r^f_s) ds} (S_T - K)^+ | \mathcal{F}_T^\xi \right],$$

(28)

where the spot FX rate dynamics S_T is considered under the equivalent domestic martingale measure.
Valuation of European Style Currency Options

Let $J_i(t,T)$ denote the occupation time of ξ in state e_i over the period $[t,T], t < T$. We introduce several new quantities that will be used in future calculations

$$R_{t,T} = \frac{1}{T-t} \int_t^T (r^d_s - r^f_s) ds = \frac{1}{T-t} \sum_{i=1}^n (r^d_i - r^f_i) J_i(t,T),$$ \hspace{1cm} (29)$$

$$U_{t,T} = \frac{1}{T-t} \int_t^T \sigma^2_s ds = \frac{1}{T-t} \sum_{i=1}^n \sigma^2_i J_i(t,T),$$ \hspace{1cm} (30)$$

$$\lambda^{\theta \star J}_{t,T} = \frac{1}{T-t} \sum_{i=1}^n \lambda^{\theta \star J}_i J_i(t,T),$$ \hspace{1cm} (31)$$

$$\lambda^{\theta \star \star}_t = \frac{1}{T-t} \int_t^T (1 + k^\theta_s J) \lambda^{\theta \star J}_s ds = \frac{1}{T-t} \sum_{i=1}^n (1 + k^\theta_i J) \lambda^{\theta \star J}_i J_i(t,T),$$ \hspace{1cm} (32)$$
Valuation of European Style Currency Options

\[V_{t,T,m}^2 = U_{t,T} + \frac{m\sigma_J^2}{T - t}, \]

\[R_{t,T,m} = R_{t,T} - \frac{1}{T - t} \int_t^T \lambda_s^\theta^* J k_s^\theta^* J ds + \frac{1}{T - t} \int_t^T \frac{\log(1 + k_s^\theta^* J)}{T - t} ds = \]

\[R_{t,T} - \frac{1}{T - t} \sum_{i=1}^n \lambda_i^\theta^* J k_i^\theta^* J + \frac{m}{T - t} \sum_{i=1}^n \frac{\log(1 + k_i^\theta^* J)}{T - t} J_i(t,T), \]

where \(J_i(t,T) := \int_t^T < \xi_s, e_i > ds, \) \(\sigma_J^2 \) is the variance of the distribution of the jumps, \(m \) is the number of jumps in the interval \([t, T]\), \(n \) is the number of states of the Markov chain \(\xi \).
From the pricing formula in Merton (1976) let us define

$$\Pi_0(S, K, T; R_{0,T}, U_{0,T}, \lambda_{0,T}) = \sum_{m=0}^{\infty} \frac{e^{-T\lambda_{0,T}^*J} \left(T\lambda_{0,T}^*\right)^m}{m!} \times (35)$$

$$BS_0(S, K, T, V_{0,T,m}^2, R_{0,T,m}),$$

where $BS_0(S, K, T, V_{0,T,m}^2, R_{0,T,m})$ is the standard Black-Scholes price formula with initial spot FX rate S, strike price K, risk-free rate r, volatility square σ^2 and time T to maturity.
The European style call option pricing formula takes the form:

\[
\Pi_0(S, K, T) = \int_{[0,t]^n} \Pi_0(S, K, T; R_{0,T}, U_{0,T}, \lambda_{0,T}^{\Theta^*, J}) \times \psi(J_1, J_2, ..., J_n) dJ_1 ... dJ_n.
\]

Here, \(\psi(J_1, J_2, ..., J_n)\) is the joint probability distribution density for the occupation time \(J_i(t, T) \equiv \int_t^T < \xi_s, e_i > ds,\).
Numerical Simulations

- In the Figures 1-6 we shall provide numerical simulations for the case when the amplitude of jumps is described by the double exponential distribution.
- These graphs show a dependence of the European-call option price against S/K, where S is the initial spot FX rate, K is the strike FX rate for a different maturity time T in years: 0.5, 1, 1.2.
- Blue line denotes the log-double exponential, green line denotes the log-normal, red-line denotes the plot without jumps.
Numerical Simulations

Figure: 1 $S_0 = 1, T = 0.5, \theta_1 = 10, \theta_2 = 10, p = 0.5$, mean normal = 0, sigma normal = 0.1
Figure: $S_0 = 1, T = 1.0, \theta_1 = 10, \theta_2 = 10, p = 0.5$, mean normal = 0, sigma normal = 0.1.
Numerical Simulations

Figure: \(S_0 = 1, T = 1.2, \theta_1 = 10, \theta_2 = 10, p = 0.5, \) mean normal = 0, sigma normal = 0.1
Numerical Simulations

Figure: \(S_0 = 1, T = 0.5, \theta_1 = 5, \theta_2 = 10, p = 0.5, \) mean normal = 0, sigma normal = 0.1
Numerical Simulations

Figure: 5 $S_0 = 1, T = 1.0, \theta_1 = 5, \theta_2 = 10, p = 0.5, \text{mean normal } = 0, \text{sigma normal } = 0.1$
Numerical Simulations

Figure: $S_0 = 1, T = 1.2, \theta_1 = 5, \theta_2 = 10, p = 0.5, \text{mean normal} = 0, \sigma_{\text{normal}} = 0.1$
Numerical Simulations

If we fix the value of the θ_2 parameter in the double exponential distribution with $S/K = 1$ the corresponding plot is given in Figure 7.
Bo et al. (2010) Results

This research generalizes the results by L. Bo, Y. Wang, X. Yang 'Markov-modulated jump-diffusion for currency option pricing' published in *Insurance: Mathematics & Economics*, 2010. The jump process here was modeled as a compound Poisson process with log-normal amplitude to describe the jumps.
Conclusions

- We generalized the formulas of Bo et al. (2010) for a general Lévy process
- We applied obtained formulas to the case of the double exponential distribution of jump size
- We also provided numerical simulations of European call foreign exchange option prices for different parameters

Also available on arXiv: 1402.1953.
Thank You for Your Attention and Time!