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A Sum�Product Structure

We are interested in the following sum-product structure:

Ln =
n

∑
i=1
Xi

i

∏
j=1
Yj , n 2 N. (1)

fXig: real-valued random variables

fYjg: positive random variables

In this stochastic structure, fXig and fYjg interact in a transparent way,
providing great convenience and �exibility to introduce dependence
structures to the study.

We show how the sum�product structure (1) emerges naturally in risk
management for insurance and �nance.
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Insurance and Financial Risks

When an insurance company invests its wealth in a �nancial market, it is
exposed to two kinds of risks:

insurance risk: the traditional liability risk, namely insurance claims,
related to the insurance portfolio

�nancial risk: the asset risk related to the investment portfolio
including in�ations of economy and stock market crashes

Both risks may impair the solvency of the insurance company.

We shall show examples from risk modeling, in which fXig and fYjg in
the sum�product structure (1) represent the two kinds of risks.
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Connection with Random Di¤erence Equations

If (X ,Y ), (X1,Y1), (X2,Y2), . . . , are i.i.d., then

Ln
d
=

n

∑
i=1
Xi

n

∏
j=i
Yj

=

 
n�1
∑
i=1
Xi

n�1
∏
j=i
Yj + Xn

!
Yn

d
= (Ln�1 + Xn)Yn.

The (weak) limit L∞, if it exists, satis�es

L∞
d
= (L∞ + X )Y ,

where L∞ and (X ,Y ) on the right-hand side are independent.
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Insurance without Considering Economic Factors

Consider a discrete-time risk model. Within period n:

the total premium income is denoted by a non-negative random
variable An
the total claim amount plus other daily costs is denoted by another
non-negative random variable Bn

In the world without economic factors, the insurer�s wealth process Un
exhibits a random walk structure:

U0 = x > 0, Un = Un�1 + (An � Bn) .
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An Investment Portfolio

Suppose that a �nancial market consists of a risk-free bond with price S0,n
and d risky stocks with prices S1,n, . . . , Sd ,n at time n.

Denote by π0,n the proportion invested in the bond and by πk ,n the
proportion invested in stock k. Thus, πn = (π0,n,π1,n, . . . ,πd ,n) is a
stochastic process satisfying

πn
>1 = π0,n + π1,n + � � �+ πd ,n = 1

and other possible constraints.

Denote by Vn the value process of this investment portfolio. It holds that

Vn � Vn�1
Vn�1

=
d

∑
k=0

πk ,n
Sk ,n � Sk ,n�1
Sk ,n�1

, (2)

or, equivalently,
Vn
Vn�1

=
d

∑
k=0

πk ,n
Sk ,n
Sk ,n�1

.
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The Insurer�s Wealth Process

The insurer�s wealth process fU (π)n g, starting with U (π)0 = x > 0, evolves
according to

U (π)n = U (π)n�1
Vn
Vn�1

+ (An � Bn) = U (π)n�1Y
�1
n � Xn, (3)

Xn = Bn � An: the net loss over period n, insurance risk
Yn = Vn�1/Vn: the overall stochastic discount factor over period n,
�nancial risk

Iterating (3) yields

U (π)n =

 
x �

n

∑
i=1
Xi

i

∏
j=1
Yj

! 
n

∏
j=1
Y �1j

!
=
�
x � L(π)n

� n

∏
j=1
Y �1j

!
.

The quantity L(π)n denotes the stochastic present value of the insurer�s
aggregate net losses. It exhibits a sum-product structure.
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The Ruin Probability

The classical ruin probability by time T � ∞ is

ψπ(x ;T ) = P
�

inf
0�n�T

U (π)n < 0

���� x�
= P

 
inf

0�n�T

�
x � L(π)n

� n

∏
j=1
Y �1j

!
< 0

����� x
!

= P
�
sup

0�n�T
L(π)n > x

�
,

which is the tail probability of the maximum of L(π)n .
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The Default Probability

The threshold 0 above does not make sense in practice. Insurance is a
regulated business and it regulators will not allow an insurance company to
continue its business if its wealth stays at a too low level.

Letting a be a default threshold, the default probability by time T � ∞ is
de�ned to be

ψπ(x ; a,T ) = P
�

inf
0�n�T

U (π)n < a

���� x� .
For a certain value of a, it becomes the absolute ruin probability; see:

Embrechts and Schmidli (1994, Advances in AP)

Cai (2007, Advances in AP)

Konstantinides, Ng and T. (2010, JAP)
...
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The Default Probability (Cont�d)

Instead of (3) we use its equivalent form

U (π)n � a =
�
U (π)n�1 � a

�
Y �1n �

�
Xn � aY �1n + a

�
.

Write X̃n = Xn � aY �1n + a. Iterating this recursive equation yields

U (π)n � a =
 
x � a�

n

∑
i=1
X̃i

i

∏
j=1
Yj

!
n

∏
j=1
Y �1j =

�
x � a� L̃(π)n

� n

∏
j=1
Y �1j .

Note that L̃(π)n appearing above also exhibits a sum-product structure.

Thus,

ψπ(x ; a,T ) = P
�
sup

0�n�T
L̃(π)n > x � a

�
.

The dependence structure between X̃n and Yn becomes complex.
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Regularly Varying Distributions

For a distribution F on R, we write F 2 R�α for some α � 0 if

F (xy) � y�αF (x), y > 0.

The union
R =

[
α�0

R�α

forms one of the most important classes of heavy-tailed distributions.

Bingham, Goldie and Teugels (1987, Regular Variation)

Resnick (1987, Extreme Values, Regular Variation, and Point
Processes)
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Claims Follow AR(1)

Denote the claim amount (plus other expenses) paid by an insurer
within period i by a nonnegative random variable Bi
Assume that these claim amounts form an AR(1) process: starting
with a deterministic value B0 � 0,

Bi = ρBi�1 + ξ i , (4)

the autoregressive coe¢ cient ρ takes value in [0, 1)
innovations fξ ig are i.i.d. copies of a nonnegative random variable ξ

An advantage of the AR(1) model is that it can capture asymptotic
dependence between claim amounts:

Lemma
If F 2 R�α for some α > 0, then it holds for all i1, i2 2 N that

lim
x!∞

P (Bi2 > x jBi1 > x) = ρji2�i1 jα.
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Log-return Rates also Follow AR(1)

Suppose that there is a discrete-time �nancial market consisting of:

a risk-free bond with a deterministic continuously compounded rate of
interest r > 0
a risky stock with a stochastic log-return rate Ri 2 R during period i

These log-return rates are also assumed to follow an AR(1) process:
starting with a deterministic value R0,

(Ri � µR ) = γ (Ri�1 � µR ) + ηi , (5)

the autoregressive coe¢ cient γ takes value in (�1, 1)
the innovations fηig are i.i.d. copies of a real-valued random variable η
with mean 0
the constant µR is the mean of the stationary solution R∞
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A Bivariate AR(1) Risk Model

Assume that fξ ig and fηig are mutually independent and so are the
two AR(1) processes (4) and (5).

Suppose that at the beginning of each period the insurer invests a
�xed proportion π 2 [0, 1] in the stock and keeps the rest in the
bond. Then the wealth process fU (π)m g evolves according to

U (π)m =
�
(1� π)er + πeRm

�
U (π)m�1 � (Bm � a),

U(π)0 = x > 0: a deterministic initial value
a > 0: a constant premium amount during each period
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Our Main Result

Theorem (T. and Yuan (2012, NAAJ))
Assume that F 2 R�α for some α > 0. Then it holds for every n 2 N that

ψ(x ; n) � E
"
F

 
x +

n

∑
i=1

θi
�
a� ρiB0

�! n

∑
j=1

 
n

∑
i=j

θiρ
i�j
!α#

.
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Modeling Speci�cations

ξ in (4) follows Pareto with shape parameter α > 1

η in (5) follows normal with mean 0 and variance σ2

The parameters are set to

π = 0.2, 0.5 or 0.8
n = 4
α = 1.1, 1.3 or 1.5
ρ = 0.3 or 0.5
B0 = 5.0, E [B ] = 5.0, E [ξ] = (1� ρ)E [B ]
a = 5.5
r = 1.242% (so that er � 1 = 1.25%)
γ = 0.5 or 0.8
R0 = 1.5%, E [R ] = 1.5%, σ = 0.2

The sample size is N = 1, 000, 000 for both simulations and
asymptotics despite the fact that it is more than enough for
asymptotics.
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Accuracy of the Asymptotic Estimate

Graph 4.1(a)   Accuracy of the asymptotic estimate ψ2 for π = 0.2
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Graph 4.1(b)   Accuracy of the asymptotic estimate ψ2 for π = 0.5
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Graph 4.1(c)   Accuracy of the asymptotic estimate ψ2 for π = 0.8
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Graph 4.2(a)   Accuracy of the asymptotic estimate ψ2 for α = 2.0 (N = 1,000,000)
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Graph 4.2(b)   Accuracy of the asymptotic estimate ψ2 for α = 2.0 (N = 10,000,000)
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Portfolio Optimization

Generally speaking, investors aim at maximizing gains while minimizing
risks. How to balance between gains and risks is a question that permeates
many areas of �nance.

In the insurance context, due to the increasing prudence of insurance
regulations, a solvency constraint needs to be imposed in portfolio
optimization problems.

Our goal is to determine a value of π that maximizes the expected
terminal wealth subject to a constraint on ψ(x ; n):(

arg max
0�π�1

E [U (π)n ],

subject to ψ(x ; n) � 1� q,

where 0 < q < 1 is chosen to be close to 1, say, q = 0.995.
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many areas of �nance.
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Modeling Speci�cations

ξ in (4) follows Pareto with shape parameter α > 1

η in (5) follows normal with mean 0 and variance σ2

The parameters are set to

n = 4
α = 1.1, 1.5 or 2.0
ρ = 0.3
B0 = 5.0, E [B ] = 5.0, E [ξ] = (1� ρ)E [B ]
a = 5.5
r = 1.242%
γ = 0.8,
R0 = 1.5%, E [R ] = 1.5% or 3%
σ = 0.2.
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Numerical Results

Graph 5.1   The optimal π for different values of the initial wealth
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Thank You Very Much!!!
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