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Motivation

• A portfolio (12 ) :

Full information on marginal distributions:

 ∼  and represent risks as =
−1
 () :

+

Full Information on dependence:
(1 2  ) ∼  (C is called the copula)

=

VaR [1 +2 + +] can be computed!



• A portfolio (12 ) :

Full information on marginal distributions:

 ∼  and represent risks as =
−1
 () :

+

Partial Information on dependence:
(1 2  ) ∼ ?
=

VaR [1 +2 + +] cannot be computed!



Literature

•Makarov (1981), Rüschendorf (1982), Rüschendorf & Uckelmann (1991),
Denuit, Genest & Marceau (1999), Embrechts & Puccetti (2006) Em-
brechts, Puccetti & Rüschendorf (2013):

 := Sup {VaR [1+2++]} 
subject to  ∼ 

• Explicit sharp (attainable) bounds
·  = 2 (Makarov, Rüschendorf)
· homogeneous portfolios under some conditions
· Asymptotic sharpness results
• Approximate sharp bounds
· The Rearrangement Algorithm (Puccetti & Rüschendorf)



Example of ”M”

• Consider a portfolio of 10,000 loans all having a default probability  =
0049 The default correlation is  = 00157We plot VaR when using the

KMV credit risk portfolio model (Industry standard - also used in Basel III

and Solvency II) and we compare it with  .

confidence VaR ”M”
 = 095 10.1% 98%
 = 0995 15.1% 100%



Some observations

• One has that:

M ≥ VaRq [X1] + VaRq [X1] + ...+VaRq [Xn]
(RHS=situation of perfect dependence, i.e. when all Ui = U)

• So, the worst case VaR (i.e. M) corresponds to a portfolio in which

diversification does not pay off.



Dependence

• Consider the problem:

 := sup {VaR [1 +2 + +]} 
subject to  ∼  var(1 +2 + +) ≤ 2



Results

• Getting simple to compute upper (and lower) VaR bounds.

• Getting a very practical algorithm that enables the practical computation
of (approximate) sharp VaR bounds.

• Showing that the approximate VaR bounds are typically close to the

simple theoretical bounds.

• Showing that in the presence of a constraint on the variance, the VaR
bounds can significantly improve upon the unconstrained bounds.

• Establishing a connection between VaR bounds and convex lower bounds.
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The Unconstrained Case (s2 =∞)

Upper bound for VaR with given marginals

VaRq [X1 + X2 + ... + Xn] 6 B := TVaRq [X c
1 + X c

2 + ... + X c
n ]

where

TVaRq [X ] =
1

1− q

∫ 1

q
VaRp [X ] dp,

Proof:

VaRq [X1 + X2 + ... + Xn] 6 TVaRq [X1 + X2 + ... + Xn]

6 TVaRq [X c
1 + X c

2 + ... + X c
n ]
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S* => VaRq(S*) =TVaRq(Sc)? 



Motivation Literature Problem No constraint Variance constraint Conclusions

Unconstrained Bounds with Xj ∼ Fj

A = LTVaRq(Sc) 6 VaRq [X1 + X2 + ...+ Xn] 6 B = TVaRq(Sc)

p 
1 q 

B:=TVaRq(Sc) 

A:=LTVaRq(Sc) 
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The Rearrangement Algorithm (RA)

• The rearrangement algorithm (RA) (Puccetti & Rüschendorf, 2012) can

be seen as a very clever attempt to obtain “sums that behave as much

as possible as sums “that are flat in the upper tail”. It can be used as a

practical (approximative) way to obtain the true upper bound for the VaR.

• Let d be the number of points used to discretize the risks with distribution

Fj. (j = 1, 2, ..., n). One first samples the risks into d equally probable

values xij and one obtains a d× n matrix X = (xij).

• Loosely speaking, the RA is then a method in which subsequent columns

of the appropriate lower matrix are rearranged such that they become (lo-

cally) anti-monotonic with the sum of all other columns until convergence

is reached.
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 10 1 4 
 11 7 7 
 12 8 9 

1-q 

q 

Sum= 11 
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Sum= 25 

Sum= 29 



  8 0 3 
 10 1 4 
 11 7 7 
 12 8 9 

1-q 

q 

Sum= 11 

Sum= 15 

Sum= 25 

Sum= 29 

Rearrange within 
columns..to make the 
sums as constant as  
possible… 
B=(11+15+25+29)/4=20 



  8 8 4 
 10 7 3 
 12 1 7 
 11 0 9 

1-q 

q 

Sum= 20 

Sum= 20 

Sum= 20 

Sum= 20 

=B!  
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VaR bound with variance constraint (s2 <∞)

• Define a random variable X ∗ as follows:

X ∗ =

{
A with probability q
B with probability 1− q.

(2)
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Unconstrained Bounds with Xj ∼ Fj

A = LTVaRq(Sc) 6 VaRq [X1 + X2 + ...+ Xn] 6 B = TVaRq(Sc)

p 
1 q 

B:=TVaRq(Sc) 

A:=LTVaRq(Sc) 
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• If var(X ∗) 6 s2, then the bound B cannot be readily improved.
When var(X ∗) > s2, B is too wide. ⇒ The idea is as follows:
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Solving with the variance constraint

• Define a random variable Y ∗ as follows:

Y ∗ =

{
a with probability q
b with probability 1− q

,

p 

b 

a a 

Steven Vanduffel Value-at-Risk bounds with variance constraints 21



Motivation Literature Problem No constraint Variance constraint Conclusions

Solving with the variance constraint

• Define a random variable Y ∗ as follows:

Y ∗ =

{
a with probability q
b with probability 1− q

,

Constrained Bounds with Xj ∼ Fj and variance 6 s2

a = max

(
A, µ− s

√
1− q

q

)
6 VaRq [X1 + X2 + ...+ Xn]

6 b = min

(
B, µ+ s

√
q

1− q

)
• Hence, if the variance s2 is not “too large” (i.e. when
s2 6 q(A− µ)2 + (1− q)(B − µ)2), then the bound b strictly
improves upon B.

Steven Vanduffel Value-at-Risk bounds with variance constraints 21



   
  

1-q 

-Apply the RA separately 
on the appropriate red 
area (with average of the 
sums =b) and the 
remaining red green area 
 

-If the variance constraint 
is satisfied then stop the 
algorithm, otherwise shift 
up the red area by one row 
and start over. 

Extended RA (ERA) 
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Bounds on VaR of sum of Pareto (θ = 3) with ρ = 0.15

Panel A: Approximate sharp bounds obtained by the ERA
(md ,Md) n = 10 n = 100

VaR95% d = 1, 000 (4.118 ; 19.93) (42.55 ; 174.0)
VaR99.5% d = 1, 000 (4.868 ; 53.99) (47.07 ; 457.6)

Panel B: Variance-constrained VaR bounds (theoretical)

(md ,Md) n = 10 n = 100

VaR95%, d = 1, 000 (4.100 ; 20.35) (42.45 ; 175.9)
VaR99.5%, d = 1, 000 (4.662 ; 54.87) (47.06 ; 459.4)

Panel C: Unconstrained VaR bounds (theoretical)

(md ,Md) n = 10 n = 100

VaR95%, d = 1, 000 (3.642 ; 29.05) (36.42 ; 290.5)
VaR99.5%, d = 1, 000 (4.615 ; 64.06) (46.15 ; 640.6)
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Furthermore, using Theorem 3.3 we derive ad and bd as

ad = max

(
np− s

√
1− q

q
, Ad

)
, bd = min

(
np + s

√
q

1− q
, Bd

)
.

Similarly as in the case of a portfolio of normally and Pareto distributed risks, we also apply the
extended RA to find numerical VaR bounds. Finally, we also report the results that are obtained
using different mixture models that we apply asymptotically. The results are reported in Table
5.4. All numbers are normalized as percentage of the maximum possible total loss, i.e. n. In other
words, in Table 5.4 the outputs Ad, Bd, ad, bd and the approximate sharp bounds that are obtained
by applying the extended RA are divided by n and multiplied by 100. The example shows that
adding a variance constraint has a significant impact on the level of the VaR bounds. For example,
the unconstrained upper bound of the 95%-VaR is 98%, but the constrained one is only 16.73%.
As expected the difference between the upper and lower bounds is increasing significantly when
increasing the probability level used for VaR assessments. Clearly, when using q = 99.5% as the basis
for calculating VaR and capital requirements, then the results of the models are typically within the
big range of possible values of VaR but as they only use information on the default probability p and
the default correlation 
D they seem difficult to justify. The model risk appears more limited when
using lower probability levels for assessing the VaR. For example, when using the 90%-VaR we find
that the distance between the upper bound bd and the lower bound ad becomes more limited and the
different industry models provide outcomes that are nearly in the middle of the interval (ad, bd).

(Ad, Bd) (ad, bd) (md,Md) KMV Beta CreditMetrics

VaR0.8 (0%; 24.50%) (3.54%; 10.33%) (3.63%; 10%) 6.84% 6.95% 6.71%

VaR0.9 (0%; 49.00%) (4.00%; 13.04%) (4.00%; 13%) 8.51% 8.54% 8.41%

VaR0.95 (0%; 98.00%) (4.28%; 16.73%) (4.32%; 16%) 10.10% 10.01% 10.11%

VaR0.995 (4.42%; 100.00%) (4.71%; 43.18%) (4.73%; 40%) 15.15% 14.34% 15.87%

Table 5.4 The table provides VaR bounds and VaR computed in different models (KMV, Beta, Credit-
Metrics).

Finally, we compute the bounds A, a, b and B as well as the VaRs in a KMV framework for an
infinitely big portfolio assuming a relevant range of default probabilities and asset correlations. The
results are reported in Table 5.5 and confirm the findings of the previous example.

p = 0.25% p = 1%

(A,B) (a, b) KMV (A,B) (a, b) KMV

ρA = 0% (0%; 50%) (0.25%; 0.25%) 0.25% (0.50%; 100%) (1.00%; 1.00%) 1.0%

ρA = 6% (0%; 50%) (0.23%; 3.27%) 1.2% (0.50%; 100%) (0.95%; 10.98%) 4.0%

ρA = 12% (0%; 50%) (0.23%; 5.05%) 2.1% (0.50%; 100%) (0.92%; 16.27%) 6.3%

ρA = 18% (0%; 50%) (0.23%; 6.84%) 2.9% (0.50%; 100%) (0.90%; 21.18%) 8.7%

ρA = 24% (0%; 50%) (0.21%; 8.76%) 3.8% (0.50%; 100%) (0.87%; 26.09%) 11.1%

ρA = 30% (0%; 50%) (0.20%; 10.85%) 4.8% (0.50%; 100%) (0.85%; 31.13%) 13.7%

Table 5.5 Unconstrained and constrained upper and lower 0.995-VaR bounds for several combinations
of default probability and correlation and the VaR in the (one-factor) KMV model.

In particular, they show the significant impact of the variance constraint on the VaR bounds. For
example, when the asset correlation ρA = 6% and p = 1%, one has that the unconstrained upper
bound for the 99.5%-VaR is 100% whereas the constrained bound is only 11.1%. These findings also
confirm that computing capital requirements based on the 99.5% VaRs is prone to significant model
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Conclusions

I Assess uncertainty on Value-at-Risk of a portfolio with given
marginals with partial information on dependence (through
the variance of the sum)

I Other information on dependence

- VaR bounds with higher moments (with Bernard, Denuit)

M := supVaRq [X1 + X2 + ... + Xn] ,
E ((X1 + X2 + ... + Xn)k) is known, k = 1, 2, ...,m

- Information on the joint distribution under some scenarios
(with Bernard)
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