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Motivation

e A portfolio (X1, X, ..., Xpn) :

Full information on marginal distributions:
X ~ F; and represent risks as Xj:Fj_l(Uj). :

_|_

Full Information on dependence:
(U1,Up,...,Up) ~ C (C is called the copula)

VaRg [ X1 + Xo + ... + Xy]| can be computed!




e A portfolio (X1, Xo, ..., Xpn) :

Full information on marginal distributions:
~ F; and represent risks as Xj:Ej_l(Uj). :

X

_l_

Partial Information on dependence:

(U1, Us, ..., Un) ~ 7

VaR,

Xl—I—XQ—I—...—I—Xn

cannot be computed!




Literature

e Makarov (1981), Riischendorf (1982), Riischendorf & Uckelmann (1991),
Denuit, Genest & Marceau (1999), Embrechts & Puccetti (2006) Em-
brechts, Puccetti & Riischendorf (2013):

M = Sup {VaRy [X1+X2+... + X,]},
subject to X, ~ F.

e Explicit sharp (attainable) bounds

- n = 2 (Makarov, Riischendorf)

- homogeneous portfolios under some conditions

- Asymptotic sharpness results

e Approximate sharp bounds

- The Rearrangement Algorithm (Puccetti & Riischendorf)



Example of "M”

e Consider a portfolio of 10,000 loans all having a default probability p =
0.049. The default correlation is p = 0.0157. We plot VaR4 when using the
KMV credit risk portfolio model (Industry standard - also used in Basel Il
and Solvency Il) and we compare it with M.

confidence | VaR,; | "M"
=095 |10.1% | 98%
g = 0.995 || 15.1% | 100%




Some observations

e One has that:

(RHS=situation of perfect dependence, i.e. when all U; = U)

e So, the worst case VaR (i.e. M) corresponds to a portfolio in which
diversification does not pay off.



Dependence

e Consider the problem:

M :=sup{VaR;[X1 + X2+ ... + X4]},
subject to X; ~ Fy,var(X1 4+ Xo + ...+ Xp) < s2




Results

e Getting simple to compute upper (and lower) VaR bounds.

e Getting a very practical algorithm that enables the practical computation
of (approximate) sharp VaR bounds.

e Showing that the approximate VaR bounds are typically close to the
simple theoretical bounds.

e Showing that in the presence of a constraint on the variance, the VaR
bounds can significantly improve upon the unconstrained bounds.

e Establishing a connection between VaR bounds and convex lower bounds.



The Unconstrained Case (s? = ~0)

VaRg [X1 + X2 + ... + X5] < B:=TVaRq [X] + X5 + ... + X]

where L
1
TVaRy [X] = —— / VaRr, [X] dp,
1-qg/,
Proof:

VaRg [X1 + X2+ ... + Xp] < TVaRg[Xi +Xo + ... + X,
< TVaRg [X{ + X5 + ... + X£]



VaR,(S9)




S* => VaR (S*) =TVaR (5¢)?

VaR,(5)




A = LTVaRy(5°) < VaRq [X1 + Xa + ... + Xp] < B = TVaR,(5°)

B:=TVa Rq(SCE :

A:=LTVaR (59)




The Rearrangement Algorithm (RA)

e The rearrangement algorithm (RA) (Puccetti & Riischendorf, 2012) can
be seen as a very clever attempt to obtain “sums that behave as much
as possible as sums “that are flat in the upper tail”. It can be used as a
practical (approximative) way to obtain the true upper bound for the VaR.

e Let d be the number of points used to discretize the risks with distribution
F;. (7 = 1,2,...,n). One first samples the risks into d equally probable
values z;; and one obtains a d x n matrix X = (zj;).

e Loosely speaking, the RA is then a method in which subsequent columns
of the appropriate lower matrix are rearranged such that they become (lo-
cally) anti-monotonic with the sum of all other columns until convergence
Is reached.



8|0 3
10 | 1 4
11 | 7 7
12 | 8 9

Sum=11

Sum=15

Sum= 25

Sum= 29



8|0 3
10 | 1 4
11 | 7 7
12 | 8 9

Sum=11

Sum=15

Sum= 25

Sum= 29

Rearrange within
columns..to make the
sums as constant as
possible...
B=(11+15+25+29)/4=20



8|8 4
10 | 7 3
12 | 1 7
11 | 0 9

Sum= 20

Sum= 20

Sum= 20

Sum= 20

B!



VaR bound with variance constraint (s*> < o0)

e Define a random variable X* as follows:

« __ | A with probability q
X0 = { B with probability 1 — g. (2)

A

B:=TVaR,(S¢).

A:=LTVaR (5

> 5

q 1

o If var(X*) < s2, then the bound B cannot be readily improved.
When var(X*) > s2, B is too wide. = The idea is as follows:



Solving with the variance constraint

e Define a random variable Y* as follows:

ye_ {2 with probability g
~ | b with probability 1 —q ’

A




Constrained Bounds with X; ~ F; and variance < =

1
a = max (A,u—s“f) < VaRg [X1 + X2 + ... + Xi]
o q
< b= min <B, w+s )
Vi-gq

e Hence, if the variance s° is not “too large” (i.e. when
s2 < q(A— )%+ (1 — q)(B — i)?), then the bound b strictly
improves upon B.

2



Extended RA (ERA)

-Apply the RA separately
on the appropriate red
area (with average of the
sums =b) and the
remaining red green area

-If the variance constraint
is satisfied then stop the
algorithm, otherwise shift
up the red area by one row
and start over.



Bounds on VaR of sum of Pareto (§ = 3) with p = 0.15

Panel A: Approximate sharp bounds obtained by the ERA
(md,l\/ld) n=10 n =100

VaRgse, d=1,000 | (4.118; 19.93) || (42.55; 174.0)

VaRggs, d =1,000 || (4.868 ; 53.99) || (47.07 ; 457.6)




Bounds on VaR of sum of Pareto (6 = 3) with p = 0.15

Panel A: Approximate sharp bounds obtained by the ERA

(mg, My) n=10 n =100
VaRgso, d=1,000 || (4.118; 19.93) | (42.55; 174.0)
VaRgg50, d =1,000 || (4.868 ; 53.99) || (47.07 ; 457.6)

Panel B: Variance-constrained VaR bounds (theoretical)

(mg, My) n=10 n =100
VaRgs;, d=1,000 | (4.100 ; 20.35) || (42.45; 175.9)
VaRgg 50, d =1,000 || (4.662 ; 54.87) || (47.06 ; 459.4)




Bounds on VaR of sum of Pareto (6 = 3) with p = 0.15

Panel A: Approximate sharp bounds obtained by the ERA

(mg, My) n=10 n =100
VaRgsy, d =1,000 || (4.118; 19.93) || (42.55 ; 174.0)
VaRgg5y, d =1,000 || (4.868 ; 53.99) || (47.07 ; 457.6)

Panel B: Variance-constrained VaR bounds (theoretical)

(mg, My) n=10 n =100
VaResy,,  d = 1,000 || (4.100 ; 20.35) || (42.45 ; 175.9)
VaRgg 59, d =1,000 || (4.662 ; 54.87) || (47.06 ; 459.4)

Panel C: Unconstrained VaR bounds (theoretical)
(mg, Ma)

n=10

n =100

VaR95%7
VaRgg 5%,

d = 1,000
d = 1,000

(3.642 ; 29.05)
(4.615 ; 64.06)

(36.42 ; 290.5)
(46.15 ; 640.6)




|| (Ag, Ba) (ag,bq) (mg, Myg) KMV Beta  CreditMetrics

VaRo.g (0%; 24.50%) (3.54%; 10.33%)  (3.63%; 10%) 6.84% 6.95% 6.71%
VaRo.9 (0%; 49.00%) (4.00%; 13.04%)  (4.00%; 13%) 8.51% 8.54% 8.41%
VaRo.95 (0%; 98.00%) (4.28%; 16.73%)  (4.32%; 16%) 10.10% 10.01% 10.11%
VaRo.g95 || (4.42%; 100.00%) (4.71%; 43.18%)  (4.73%; 40%) 15.15% 14.34% 15.87%

Table 5.4 The table provides VaR bounds and VaR computed in different models (KMV, Beta, Credit-
Metrics).



Conclusions

» Assess uncertainty on Value-at-Risk of a portfolio with given
marginals with partial information on dependence (through
the variance of the sum)

» Other information on dependence
- VaR bounds with higher moments (with Bernard, Denuit)
M :=supVaRq [X1 + X2 + ... + X],
E((Xy + Xo + ... + X,)¥) is known, k =1,2,....m

- Information on the joint distribution under some scenarios
(with Bernard)
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