Value-at-Risk Bounds with Variance Constraints

Carole Bernard, Ludger Rüschendorf and Steven Vanduffel

Samos, May 2014

Motivation

• A portfolio $(X_1, X_2, ..., X_n)$:

Full information on marginal distributions:

$$X_j \sim F_j$$
 and represent risks as $X_j = F_j^{-1}(U_j)$.

+

Full Information on **dependence**:

$$(U_1, U_2, ..., U_n) \sim C$$
 (C is called the copula)

_

$$VaR_q[X_1+X_2+...+X_n]$$
 can be computed!

• A portfolio $(X_1, X_2, ..., X_n)$:

Full information on marginal distributions:

$$X_j \sim F_j$$
 and represent risks as $X_j = F_j^{-1}(U_j)$.

+

Partial Information on dependence:

$$(U_1, U_2, ..., U_n) \sim ?$$

 $VaR_q[X_1 + X_2 + ... + X_n]$ can**not** be computed!

Literature

• Makarov (1981), Rüschendorf (1982), Rüschendorf & Uckelmann (1991), Denuit, Genest & Marceau (1999), Embrechts & Puccetti (2006) Embrechts, Puccetti & Rüschendorf (2013):

$$M := \operatorname{Sup} \left\{ \operatorname{VaR}_q \left[X_1 + X_2 + \ldots + X_n \right] \right\},$$
 subject to $X_j \sim F_j.$

- Explicit sharp (attainable) bounds
- $\cdot n = 2$ (Makarov, Rüschendorf)
- · homogeneous portfolios under some conditions
- · Asymptotic sharpness results
- Approximate sharp bounds
- The Rearrangement Algorithm (Puccetti & Rüschendorf)

Example of "M"

ullet Consider a portfolio of 10,000 loans all having a default probability p=0.049. The default correlation is $\rho=0.0157$. We plot VaR_q when using the KMV credit risk portfolio model (Industry standard - also used in Basel III and Solvency II) and we compare it with M.

confidence	VaR_q	"M"
q = 0.95		
q = 0.995	15.1%	100%

Some observations

• One has that:

$$M \ge \operatorname{VaR}_q[X_1] + \operatorname{VaR}_q[X_1] + ... + \operatorname{VaR}_q[X_n]$$
 (RHS=situation of perfect dependence, i.e. when all $U_i = U$)

• So, the worst case VaR (i.e. M) corresponds to a portfolio in which diversification does not pay off.

Dependence

• Consider the problem:

$$M := \sup \{ \operatorname{VaR}_q [X_1 + X_2 + ... + X_n] \},$$

subject to $X_j \sim F_j, \operatorname{var}(X_1 + X_2 + ... + X_n) \leq s^2$

Results

- Getting simple to compute upper (and lower) VaR bounds.
- Getting a very **practical algorithm** that enables the practical computation of (approximate) sharp VaR bounds.
- Showing that the approximate VaR bounds are typically close to the simple theoretical bounds.
- Showing that in the presence of a constraint on the variance, the VaR bounds can **significantly improve** upon the unconstrained bounds.
- Establishing a connection between VaR bounds and convex lower bounds.

The Unconstrained Case ($s^2 = \infty$)

Upper bound for VaR with given marginals

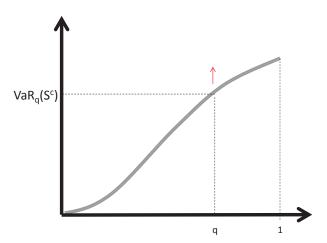
$$\operatorname{VaR}_q [X_1 + X_2 + ... + X_n] \leq B := \operatorname{TVaR}_q [X_1^c + X_2^c + ... + X_n^c]$$

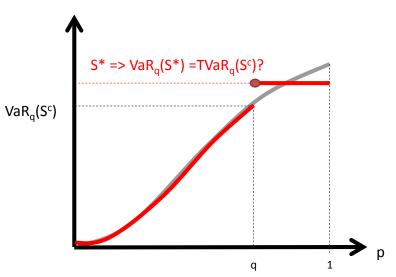
where

$$\mathsf{TVaR}_q[X] = \frac{1}{1-q} \int_q^1 \mathsf{VaR}_p[X] \; \mathrm{d}p,$$

Proof:

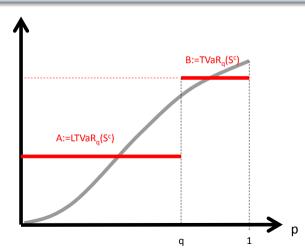
$$\begin{aligned} \operatorname{VaR}_q\left[X_1 + X_2 + \ldots + X_n\right] &\leqslant & \operatorname{TVaR}_q\left[X_1 + X_2 + \ldots + X_n\right] \\ &\leqslant & \operatorname{TVaR}_q\left[X_1^c + X_2^c + \ldots + X_n^c\right] \end{aligned}$$





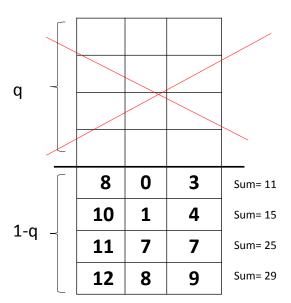
Unconstrained Bounds with $X_j \sim F_j$

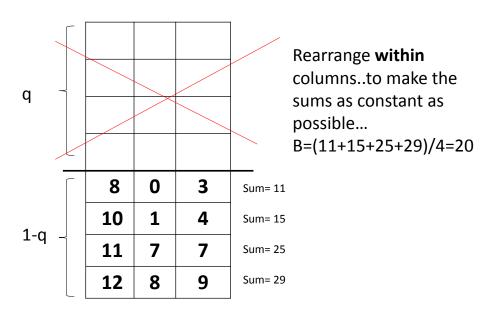
$$A = LTVaR_q(S^c) \leqslant VaR_q[X_1 + X_2 + ... + X_n] \leqslant B = TVaR_q(S^c)$$

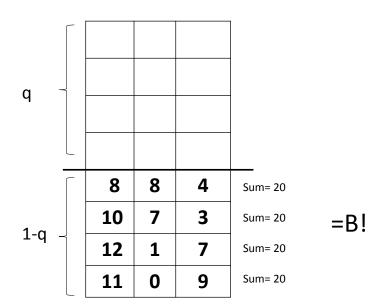


The Rearrangement Algorithm (RA)

- The rearrangement algorithm (RA) (Puccetti & Rüschendorf, 2012) can be seen as a very clever attempt to obtain "sums that behave as much as possible as sums "that are flat in the upper tail". It can be used as a practical (approximative) way to obtain the true upper bound for the VaR.
- Let d be the number of points used to discretize the risks with distribution F_j . (j=1,2,...,n). One first samples the risks into d equally probable values x_{ij} and one obtains a $d \times n$ matrix $\mathbf{X} = (x_{ij})$.
- Loosely speaking, the RA is then a method in which subsequent columns of the appropriate lower matrix are rearranged such that they become (locally) anti-monotonic with the sum of all other columns until convergence is reached.



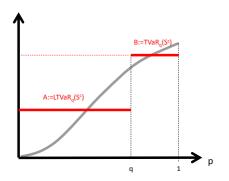




VaR bound with variance constraint ($s^2 < \infty$)

• Define a random variable X^* as follows:

$$X^* = \begin{cases} A & \text{with probability } q \\ B & \text{with probability } 1 - q. \end{cases}$$
 (2)



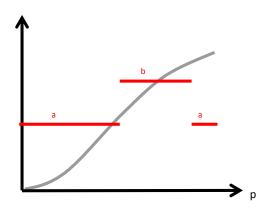
• If $var(X^*) \leq s^2$, then the bound B cannot be readily improved.

When $var(X^*) > s^2$, B is too wide. \Rightarrow The idea is as follows:

Solving with the variance constraint

• Define a random variable Y^* as follows:

$$Y^* = \left\{ egin{array}{ll} a & ext{with probability } q \ b & ext{with probability } 1-q \end{array}
ight. ,$$



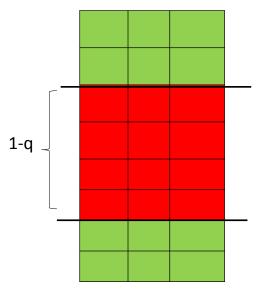
Constrained Bounds with $X_j \sim F_j$ and variance $\leqslant s^2$

$$a = \max\left(A, \mu - s\sqrt{rac{1-q}{q}}
ight) \leqslant \operatorname{VaR}_q\left[X_1 + X_2 + ... + X_n\right]$$

• Hence, if the variance s^2 is not "too large" (i.e. when $s^2 \le q(A-\mu)^2 + (1-q)(B-\mu)^2$), then the bound b strictly improves upon B.

 $\leqslant b = \min\left(B, \ \mu + s\sqrt{\frac{q}{1-q}}\right)$

Extended RA (ERA)



-Apply the RA separately on the appropriate red area (with average of the sums =b) and the remaining red green area

-If the variance constraint is satisfied then stop the algorithm, otherwise shift up the red area by one row and start over.

Bounds on VaR of sum of Pareto (heta=3) with ho=0.15

Panel A: Approximate sharp bounds obtained by the ERA

Tallel A. App	noximate sharp	bounds obtained by	y the LIVA
(m_d)	$, M_d)$	<i>n</i> = 10	n = 100
VaR _{95%}		(4.118; 19.93)	
$\mathrm{VaR}_{99.5\%}$	d = 1,000	(4.868; 53.99)	(47.07; 457.6)

Bounds on VaR of sum of Pareto ($\theta = 3$) with $\rho = 0.15$

Panel A: Approximate sharp bounds obtained by the ERA

<u>. ae. ,</u> ,p.p	. o, p	bounds obtained by	,	
$ (m_d)$	$, M_d)$	n=10	<i>n</i> = 100	
VaR _{95%}	d = 1,000	(4.118; 19.93)	(42.55; 174.0)	
$VaR_{99.5\%}$	d = 1,000	(4.868; 53.99)	(47.07; 457.6)	

Panel B: Variance-constrained VaR bounds (theoretical)

(m _c	$_d, M_d)$	n=10	n = 100
VaR _{95%} ,	d = 1,000	(4.100; 20.35)	(42.45 ; 175.9)
$VaR_{99.5\%}$	d = 1,000	(4.662 ; 54.87)	(47.06; 459.4)

Bounds on VaR of sum of Pareto (heta=3) with ho=0.15

Panel A: Approximate sharp bounds obtained by the ERA

ranei A. App	noximate sharp	bounds obtained by	, the LIVA
(m_d)	(M_d)	n=10	n = 100
		(4.118; 19.93)	
VaR _{99.5%}	d = 1,000	(4.868 ; 53.99)	(47.07; 457.6)

Panel B: Variance-constrained VaR bounds (theoretical)

$(m_d,$	M_d)	n=10	n = 100
VaR _{95%} ,	d = 1,000	(4.100; 20.35)	(42.45 ; 175.9)
$\mathrm{VaR}_{99.5\%},$	d = 1,000	(4.662 ; 54.87)	(47.06; 459.4)

Panel C: Unconstrained VaR bounds (theoretical)

(m_d)	(M_d)	n = 10	$\int n = 100$
VaR _{95%} ,	d = 1,000	(3.642; 29.05)	(36.42; 290.5)
VaR _{99.5%} ,	d = 1,000	(4.615; 64.06)	(46.15; 640.6)

VaR _{0.8}	(0%; 24.50%)	(3.54%; 10.33%)	(3.63%; 10%)	6.84%	6.95%	6.71%
$VaR_{0.9}$	(0%; 49.00%)	(4.00%; 13.04%)	(4.00%; 13%)	8.51%	8.54%	8.41%
$VaR_{0.95}$	(0%; 98.00%)	(4.28%; 16.73%)	(4.32%; 16%)	10.10%	10.01%	10.11%
$VaR_{0.995}$	(4.42%; 100.00%)	(4.71%; 43.18%)	(4.73%; 40%)	15.15%	14.34%	15.87%

 (m_d, M_d)

KMV

Beta

CreditMetrics

 (a_d, b_d)

 (A_d, B_d)

Table 5.4 The table provides VaR bounds and VaR computed in different models (KMV, Beta, Credit-Metrics).

Conclusions

- ➤ Assess uncertainty on Value-at-Risk of a portfolio with given marginals with partial information on dependence (through the variance of the sum)
- ▶ Other information on dependence
 - VaR bounds with higher moments (with Bernard, Denuit)

$$M := \sup \operatorname{VaR}_q [X_1 + X_2 + ... + X_n],$$

 $E((X_1 + X_2 + ... + X_n)^k)$ is known, $k = 1, 2, ..., m$

- Information on the joint distribution under some scenarios (with Bernard)

References

- Bernard, C., Jiang, X., and S. Vanduffel (2012): "Note on Improved Fréchet bounds and model-free pricing of multi-asset options", Journal of Applied Probability.
- Bernard, C., L. Rüschendorf, and S. Vanduffel (2013): "VaR Bounds under variance constraints," Working Paper.
- Embrechts, P., G. Puccetti, and L. Rüschendorf (2013): "Model uncertainty and VaR aggregation," Journal of Banking & Finance.
- Cheung, K.C. and S. Vanduffel (2011). "Bounds for sums of random variables when the marginals and the variance of the sum are known," Scandinavian Actuarial Journal.
- Puccetti, G., and L. Rüschendorf (2012): "Computation of sharp bounds on the distribution of a function of dependent risks," *Journal of Computational and Applied Mathematics*.