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De Finetti’s Dividend Problem

Given a stochastic process X , the problem is to choose a
nondecreasing process L so as to maximize

E
[∫ σ

0
e−qtdLt

]
where σ := inf {t > 0 : Xt − Lt < 0}.
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Some History

� Random walk model by De Finetti (1957).

� Brownian motion model by Jeanblanc and Shiryaev (1995).
� Spectrally negative Lévy models

� Use of fluctuation/excursion theories and scale functions pioneered by,
e.g. Bertoin, Doney & Kyprianou.

� Spectrally positive Lévy models
� Avanzi, Gerber & Shiu (IME, 2007) and Avanzi & Gerber (ASTIN,

2008) (focus on i.i.d. (hyper)exponential jumps).
� Bayraktar, Kyprianou & Y. (ASTIN, 2013) for a general spectrally

positive Lévy process.
� This paper extends the above by introducing fixed transaction costs.
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Outline

� Solutions to the dual model
� with review on fluctuation theory of (reflected) Lévy processes.

� Extensions with transaction costs (impulse control):

vπ(x) := Ex

[ ∫ σπ

0
e−qtd

(
Lπt −

∑
0≤s<t

β1{∆Lπs >0}

)]
.

� Numerical Results.
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Spectrally Positive Lévy Processes

� Let X be a spectrally positive Lévy process with Laplace exponent:

ψ(s) := logE
[
e−sX1

]
= cs +

1

2
σ2s2 +

∫
(0,∞)

(e−sz − 1 + sz1{0<z<1})ν(dz),

such that
∫

(0,∞)(1 ∧ z2)ν(dz) <∞.

� It has paths of bounded variation if and only if σ = 0 and∫
(0,1) z ν(dz) <∞.

� We exclude the trivial case in which X is a subordinator.
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The Classical Dual Model
� A strategy π = {Lπt , t ≥ 0} is a nondecreasing, right-continuous

and adapted process starting at zero.
� A controlled risk process is the difference:

Uπ
t := Xt − Lπt , t ≥ 0.

� Time of ruin: σπ := inf {t > 0 : Uπ
t < 0}.

� We want to maximize, for q > 0,

vπ(x) := Ex

[∫ σπ

0
e−qtdLπt

]
,

over the set of all strategies Π satisfying Lπt − Lπt− ≤ Uπ
t− + ∆Xt

for all t ≤ σπ a.s.
� We want to obtain the value function:

v(x) := sup
π∈Π

vπ(x), x ≥ 0.
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Solution Procedures

� We follow a classical approach “guess” and “verify”.

� Guess that an optimal strategy is a barrier strategy (reflected Lévy
process) πa := {La

t ; t ≤ σa} in the form:

La
t := sup

0≤s≤t
(Xs − a) ∨ 0,

Ua
t := Xt − La

t ,

with the corresponding ruin time σa := inf {t > 0 : Ua
t < 0}.

� Choose the value of a using some smoothness condition.

� Verify that

va(x) := Ex

[∫ σa

0
e−qtdLa

t

]
≥ sup

π∈Π
vπ(x).
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Scale Functions

� Recall that X is a spectrally positive Lévy process with Laplace
exponent ψ(s) = logE

[
e−sX1

]
.

� Fix any q > 0, there exists a function called the q-scale function

W (q) : R→ [0,∞),

which is zero on (−∞, 0), continuous and strictly increasing on
[0,∞), and is characterized by the Laplace transform:∫ ∞

0
e−sxW (q)(x)dx =

1

ψ(s)− q
, s > Φ(q),

where
Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}.
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Scale Functions
Let us define the first down- and up-crossing times, respectively, by

τ−a := inf {t ≥ 0 : Xt < a}
τ+
b := inf {t ≥ 0 : Xt > b} .

Then we have for any b > 0

Ex

[
e−qτ

−
0 1{τ+

b >τ
−
0 }
]

=
W (q)(b − x)

W (q)(b)
,

Ex

[
e−qτ

+
b 1{τ+

b <τ
−
0 }
]

= Z (q)(b − x)− Z (q)(b)
W (q)(b − x)

W (q)(b)
,

where

Z (q)(x) := 1 + qW
(q)

(x),

W
(q)

(x) :=

∫ x

0
W (q)(y)dy .
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Main Results
Let µ := EX1. We will denote our candidate barrier level by

a∗ =


(

Z
(q)
)−1 (

µ
q

)
> 0 if µ > 0,

0 if µ ≤ 0,

which is well-defined because Z
(q)

(x) :=
∫ x

0 Z (q)(z)dz is monotone.

Theorem (Bayraktar, Kyprianou & Y. (Astin Bull., 2013))

We have
va∗(x) := sup

π∈Π
vπ(x), x ≥ 0,

where

va∗(x) =

{
−Z

(q)
(a∗ − x)− ψ′(0+)

q = −Z
(q)

(a∗ − x) + µ
q , if µ > 0,

x , if µ ≤ 0.
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Extension with Transaction Costs

� Consider an extension where we want to maximize

vπ(x) := Ex

[ ∫ σπ

0
e−qtd

(
Lπt −

∑
0≤s<t

β1{∆Lπs >0}

)]
,

for some fixed unit transaction cost β > 0.

� A strategy π = {Lπt , t ≥ 0} is assumed to be a pure-jump,
nondecreasing, right-continuous and adapted process starting at
zero.
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The (c1, c2)-policy

� For c2 > c1 ≥ 0, a (c1, c2)-policy, πc1,c2 :=
{

Lc1,c2
t ; t ≥ 0

}
, brings

the level of the controlled risk process Uc1,c2 := X − Lc1,c2 down to
c1 whenever it reaches or exceeds c2.

� We aim to prove that a (c∗1 , c
∗
2 )-policy is optimal for some

c∗2 > c∗1 ≥ 0.

� We shall express, in terms of the scale function,

vc1,c2(x) := Ex

[ ∫ σc1,c2

0
e−qtd

(
Lc1,c2
t −

∑
0≤s<t

β1{∆L
c1,c2
s >0}

)]
,

where σc1,c2 := inf
{

t > 0 : Uc1,c2
t < 0

}
is the corresponding ruin

time.
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Computing vc1,c2

� By the strong Markov property, it must satisfy for every
0 ≤ x ≤ c2 and 0 ≤ c1 < c2

vc1,c2(x) = Ex

[
e−qτ

+
c2 1{τ+

c2
<τ−0 }

(Xτ+
c2
− c1 − β)

]
+ Ex

[
e−qτ

+
c2 1{τ+

c2
<τ−0 }

]
v̄c1,c2 ,

where v̄c1,c2 := vc1,c2(c1).

� Solving for x = c1, we have

v̄c1,c2 =
Ec1

[
e−qτ

+
c2 1{τ+

c2
<τ−0 }

(Xτ+
c2
− c1 − β)

]
1− Ec1

[
e−qτ

+
c2 1{τ+

c2
<τ−0 }

] , 0 ≤ c1 < c2.

� These can be rewritten in terms of the scale function.
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Candidate Value function

Lemma (Bayraktar, Kyprianou & Y. (IME, forthcoming))

For 0 < x < c2 and 0 ≤ c1 < c2,

vc1,c2(x) = −Z
(q)

(c2 − x) +
µ

q
+ γ(c1, c2)Z (q)(c2 − x)

− G (c1, c2)
W (q)(c2 − x)

W (q)(c2)
,

where

γ(c1, c2) := v̄c1,c2 + c2 − c1 − β −
µ

q
,

G (c1, c2) := γ(c1, c2)Z (q)(c2)− Z
(q)

(c2) +
µ

q
.

For x ≥ c2, vc1,c2(x) = x − c1 − β + v̄c1,c2 .
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Solution Procedures

� Choose 0 ≤ c∗1 < c∗2 such that vc1,c2(x) (or v̄c1,c2 − c1) is
maximized.

� Examine the smoothness of vc∗1 ,c∗2 (x); it turns out that

� at x = c∗2 , vc∗1 ,c∗2
(x) is C 0 (C 1) when X is of bounded (unbounded)

variation;
� at x = c∗1 , v ′c∗1 ,c∗2

(c∗1 ) = 1 when c∗1 > 0 and v ′c∗1 ,c∗2
(c∗1 ) ≤ 1 when

c∗1 = 0.

� Verify the optimality.

� Show uniqueness of (c∗1 , c
∗
2 ).

15 of 22



Main Results

Theorem (Bayraktar, Kyprianou & Y. (IME, 2013))

� There exist unique 0 ≤ c∗1 < c∗2 <∞ such that G (c∗1 , c
∗
2 ) = 0 and

either

case 1 c∗1 > 0 with H(c∗1 , c
∗
2 ) = 0, or

case 2 c∗1 = 0 with H(c∗1 , c
∗
2 ) ≥ 0,

where

G (c1, c2):= γ(c1, c2)Z (q)(c2)− Z
(q)

(c2) +
µ

q
,

H(c1, c2):= q
[
γ(c1, c2)W (q)(c2 − c1)−W

(q)
(c2 − c1)

]
.

� The (c∗1 , c
∗
2 )-strategy is optimal and the value function is

vc∗1 ,c∗2 (x) = −Z
(q)

(c∗2 − x) +
µ

q
+ γ(c∗1 , c

∗
2 )Z (q)(c∗2 − x), x ≥ 0.

16 of 22



Some properties

Proposition

� Let vβ denote the value function corresponding to the dividend
payment problem when the fixed transaction cost is β (defined as
above), and

� v̂ the value function when there are no-transaction costs.

Then vβ converges to v̂ uniformly as β ↓ 0.

Proposition

If µ := EX1 ≤ 0, we must have c∗1 = 0.
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Numerical Results
Suppose

Xt − X0 = −dt + σBt +
Nt∑
n=1

Zn, 0 ≤ t <∞,

for some d ∈ R and σ ≥ 0. Here

� B = {Bt ; t ≥ 0} is a standard Brownian motion,

� N = {Nt ; t ≥ 0} is a Poisson process with arrival rate λ, and

� Z = {Zn; n = 1, 2, . . .} is an i.i.d. sequence of
phase-type-distributed r.v. with representation (m,α,T).

Its Laplace exponent is then

ψ(s) = ds +
1

2
σ2s2 + λ

(
α(sI− T)−1t− 1

)
.
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Numerical Results

� Suppose {−ξi ,q; i ∈ Iq} is the set of the roots of the equality
ψ(s) = q with negative real parts.

� If these are assumed distinct, the scale function can be written

W (q)(x) =
∑
i∈Iq

Ci ,q

[
eΦ(q)x − e−ξi,qx

]
, σ > 0,

W (q)(x) =
∑
i∈Iq

Ci ,q

[
eΦ(q)x − e−ξi,qx

]
+

1

d
eΦ(q)x , σ = 0.

� Here {ξi ,q; i ∈ Iq} and {Ci ,q; i ∈ Iq} are possibly complex-valued.

� We choose (m,α,T) to approximate the Weibull distribution with
density function with α = 2 and γ = 1 (obtained using the
EM-algorithm).
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Value functions
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Convergence as β ↓ 0
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