Optimal Dividends in the Dual Model under Transaction Costs

Kazutoshi Yamazaki

Department of Mathematics, Kansai University

Joint Work with Erhan Bayraktar, University of Michigan, and Andreas E. Kyprianou, University of Bath

The 8th International Conference in Actuarial Sc. & Finance, Samos
This presentation is based on: E. Bayraktar, A. E. Kyprianou and K. Yamazaki
Optimal Dividends in the Dual Model under Transaction Costs. Insurance:

Mathematics and Economics, 54:133-143, 2014.

May 31, 2014

De Finetti's Dividend Problem

Given a stochastic process X, the problem is to choose a nondecreasing process L so as to maximize

$$\mathbb{E}\left[\int_0^\sigma e^{-qt} \mathrm{d}L_t\right]$$

where $\sigma := \inf \{t > 0 : X_t - L_t < 0\}.$

Some History

- Random walk model by De Finetti (1957).
- Brownian motion model by Jeanblanc and Shiryaev (1995).
- Spectrally negative Lévy models
 - Use of fluctuation/excursion theories and scale functions pioneered by, e.g. Bertoin, Doney & Kyprianou.
- Spectrally positive Lévy models
 - Avanzi, Gerber & Shiu (IME, 2007) and Avanzi & Gerber (ASTIN, 2008) (focus on i.i.d. (hyper)exponential jumps).
 - Bayraktar, Kyprianou & Y. (ASTIN, 2013) for a general spectrally positive Lévy process.
 - $\hfill\Box$ This paper extends the above by introducing fixed transaction costs.

Outline

- Solutions to the dual model
 - □ with review on fluctuation theory of (reflected) Lévy processes.
- Extensions with transaction costs (impulse control):

$$v_{\pi}(x) := \mathbb{E}_{x} \left[\int_{0}^{\sigma^{\pi}} e^{-qt} \mathrm{d} \left(L_{t}^{\pi} - \sum_{0 \leq s < t} \beta \mathbf{1}_{\{\Delta L_{s}^{\pi} > 0\}} \right) \right].$$

Numerical Results.

Spectrally Positive Lévy Processes

Let X be a spectrally positive Lévy process with Laplace exponent:

$$\begin{split} \psi(s) &:= \log \mathbb{E}\left[e^{-sX_1}\right] \\ &= cs + \frac{1}{2}\sigma^2 s^2 + \int_{(0,\infty)} (e^{-sz} - 1 + sz \mathbf{1}_{\{0 < z < 1\}}) \nu(\mathrm{d}z), \end{split}$$

such that $\int_{(0,\infty)} (1 \wedge z^2) \nu(\mathrm{d}z) < \infty$.

- It has paths of <u>bounded variation</u> if and only if $\sigma = 0$ and $\int_{(0,1)} z \nu(\mathrm{d}z) < \infty$.
- We exclude the trivial case in which X is a subordinator.

The Classical Dual Model

- A strategy $\pi = \{L_t^{\pi}, t \ge 0\}$ is a nondecreasing, right-continuous and adapted process starting at zero.
- A controlled risk process is the difference:

$$U_t^{\pi}:=X_t-L_t^{\pi}, \quad t\geq 0.$$

- Time of ruin: $\sigma^{\pi} := \inf\{t > 0 : U_t^{\pi} < 0\}.$
- We want to maximize, for q > 0,

$$v_{\pi}(x) := \mathbb{E}_{\mathsf{x}} \left[\int_0^{\sigma^{\pi}} e^{-qt} \mathrm{d} L_t^{\pi} \right],$$

over the set of all strategies Π satisfying $L_t^{\pi} - L_{t-}^{\pi} \leq U_{t-}^{\pi} + \Delta X_t$ for all $t \leq \sigma^{\pi}$ a.s.

We want to obtain the <u>value function</u>:

$$v(x) := \sup_{\pi \in \Pi} v_{\pi}(x), \quad x \geq 0.$$

Solution Procedures

- We follow a classical approach "guess" and "verify".
- Guess that an optimal strategy is a barrier strategy (reflected Lévy process) $\pi_a := \{L_t^a; t \leq \sigma_a\}$ in the form:

$$L_t^a := \sup_{0 \le s \le t} (X_s - a) \lor 0,$$

$$U_t^a := X_t - L_t^a,$$

with the corresponding ruin time $\sigma_a := \inf\{t > 0 : U_t^a < 0\}$.

- Choose the value of a using some smoothness condition.
- Verify that

$$v_a(x) := \mathbb{E}_x \left[\int_0^{\sigma_a} e^{-qt} \mathrm{d} L_t^a
ight] \geq \sup_{\pi \in \Pi} v_\pi(x).$$

Scale Functions

- Recall that X is a spectrally positive Lévy process with Laplace exponent $\psi(s) = \log \mathbb{E}\left[e^{-sX_1}\right]$.
- Fix any q > 0, there exists a function called the q-scale function

$$W^{(q)}:\mathbb{R}\to[0,\infty),$$

which is zero on $(-\infty,0)$, continuous and strictly increasing on $[0,\infty)$, and is characterized by the Laplace transform:

$$\int_0^\infty e^{-sx} W^{(q)}(x) \mathrm{d}x = \frac{1}{\psi(s) - q}, \qquad s > \Phi(q),$$

$$\Phi(q) := \sup\{\lambda \ge 0 : \psi(\lambda) = q\}.$$

Scale Functions

Let us define the first down- and up-crossing times, respectively, by

$$\begin{split} \tau_a^- &:= \inf \left\{ t \geq 0 : X_t < a \right\} \\ \tau_b^+ &:= \inf \left\{ t \geq 0 : X_t > b \right\}. \end{split}$$

Then we have for any b > 0

$$\mathbb{E}_{x}\left[e^{-q\tau_{0}^{-}}1_{\left\{\tau_{b}^{+}>\tau_{0}^{-}\right\}}\right] = \frac{W^{(q)}(b-x)}{W^{(q)}(b)},$$

$$\mathbb{E}_{x}\left[e^{-q\tau_{b}^{+}}1_{\left\{\tau_{b}^{+}<\tau_{0}^{-}\right\}}\right] = Z^{(q)}(b-x) - Z^{(q)}(b)\frac{W^{(q)}(b-x)}{W^{(q)}(b)},$$

$$Z^{(q)}(x) := 1 + q \overline{W}^{(q)}(x),$$
$$\overline{W}^{(q)}(x) := \int_0^x W^{(q)}(y) dy.$$

Main Results

Let $\mu := \mathbb{E}X_1$. We will denote our candidate barrier level by

$$a^* = \begin{cases} \left(\overline{Z}^{(q)}\right)^{-1} \left(\frac{\mu}{q}\right) > 0 & \text{if } \mu > 0, \\ 0 & \text{if } \mu \le 0, \end{cases}$$

which is well-defined because $\overline{Z}^{(q)}(x) := \int_0^x Z^{(q)}(z) dz$ is monotone.

Theorem (Bayraktar, Kyprianou & Y. (Astin Bull., 2013))

We have

$$v_{a^*}(x) := \sup_{\pi \in \Pi} v_{\pi}(x), \quad x \ge 0,$$

$$v_{a^*}(x) = \begin{cases} -\overline{Z}^{(q)}(a^* - x) - \frac{\psi'(0+)}{q} = -\overline{Z}^{(q)}(a^* - x) + \frac{\mu}{q}, & \text{if } \mu > 0, \\ x, & \text{if } \mu \leq 0. \end{cases}$$

Extension with Transaction Costs

Consider an extension where we want to maximize

$$v_{\pi}(x) := \mathbb{E}_{x} \Big[\int_{0}^{\sigma^{\pi}} e^{-qt} \mathrm{d} \Big(L_{t}^{\pi} - \sum_{0 \le s \le t} \beta 1_{\{\Delta L_{s}^{\pi} > 0\}} \Big) \Big],$$

for some fixed unit transaction cost $\beta > 0$.

■ A strategy $\pi = \{L_t^\pi, t \ge 0\}$ is assumed to be a <u>pure-jump</u>, nondecreasing, right-continuous and adapted process starting at zero.

The (c_1, c_2) -policy

- For $c_2 > c_1 \ge 0$, a (c_1, c_2) -policy, $\pi_{c_1, c_2} := \{L_t^{c_1, c_2}; t \ge 0\}$, brings the level of the controlled risk process $U^{c_1, c_2} := X L^{c_1, c_2}$ down to c_1 whenever it reaches or exceeds c_2 .
- We aim to prove that a (c_1^*, c_2^*) -policy is optimal for some $c_2^* > c_1^* \ge 0$.
- We shall express, in terms of the scale function,

$$v_{c_1,c_2}(x) := \mathbb{E}_x \Big[\int_0^{\sigma_{c_1,c_2}} e^{-qt} d\Big(L_t^{c_1,c_2} - \sum_{0 \le s < t} \beta 1_{\{\Delta L_s^{c_1,c_2} > 0\}} \Big) \Big],$$

where $\sigma_{c_1,c_2} := \inf \{t > 0 : U_t^{c_1,c_2} < 0\}$ is the corresponding ruin time.

Computing v_{c_1,c_2}

■ By the strong Markov property, it must satisfy for every $0 \le x \le c_2$ and $0 \le c_1 < c_2$

$$v_{c_1,c_2}(x) = \mathbb{E}_x \left[e^{-q\tau_{c_2}^+} 1_{\{\tau_{c_2}^+ < \tau_0^-\}} (X_{\tau_{c_2}^+} - c_1 - \beta) \right]$$

+ $\mathbb{E}_x \left[e^{-q\tau_{c_2}^+} 1_{\{\tau_{c_2}^+ < \tau_0^-\}} \right] \bar{v}_{c_1,c_2},$

where $\bar{v}_{c_1,c_2} := v_{c_1,c_2}(c_1)$.

• Solving for $x = c_1$, we have

13 of 22

$$\bar{v}_{c_1,c_2} = \frac{\mathbb{E}_{c_1} \left[e^{-q\tau_{c_2}^+} \mathbb{1}_{\left\{\tau_{c_2}^+ < \tau_0^-\right\}} (X_{\tau_{c_2}^+} - c_1 - \beta) \right]}{1 - \mathbb{E}_{c_1} \left[e^{-q\tau_{c_2}^+} \mathbb{1}_{\left\{\tau_{c_2}^+ < \tau_0^-\right\}} \right]}, \quad 0 \le c_1 < c_2.$$

These can be rewritten in terms of the scale function.

Candidate Value function

Lemma (Bayraktar, Kyprianou & Y. (IME, forthcoming))

For
$$0 < x < c_2$$
 and $0 \le c_1 < c_2$,

$$v_{c_1,c_2}(x) = -\overline{Z}^{(q)}(c_2 - x) + \frac{\mu}{q} + \gamma(c_1, c_2)Z^{(q)}(c_2 - x) - G(c_1, c_2)\frac{W^{(q)}(c_2 - x)}{W^{(q)}(c_2)},$$

$$egin{aligned} \gamma(c_1,c_2) &:= ar{v}_{c_1,c_2} + c_2 - c_1 - eta - rac{\mu}{q}, \ G(c_1,c_2) &:= \gamma(c_1,c_2) Z^{(q)}(c_2) - \overline{Z}^{(q)}(c_2) + rac{\mu}{q}. \end{aligned}$$

For
$$x \ge c_2$$
, $v_{c_1,c_2}(x) = x - c_1 - \beta + \bar{v}_{c_1,c_2}$.

Solution Procedures

- Choose $0 \le c_1^* < c_2^*$ such that $v_{c_1,c_2}(x)$ (or $\bar{v}_{c_1,c_2} c_1$) is maximized.
- Examine the smoothness of $v_{c_1^*,c_2^*}(x)$; it turns out that
 - \square at $x = c_2^*$, $v_{c_1^*, c_2^*}(x)$ is C^0 (C^1) when X is of bounded (unbounded) variation;
 - $\ \square$ at $x=c_1^*$, $v'_{c_1^*,c_2^*}(c_1^*)=1$ when $c_1^*>0$ and $v'_{c_1^*,c_2^*}(c_1^*)\leq 1$ when $c_1^*=0.$
- Verify the optimality.
- Show uniqueness of (c_1^*, c_2^*) .

Main Results

Theorem (Bayraktar, Kyprianou & Y. (IME, 2013))

■ There exist unique $0 \le c_1^* < c_2^* < \infty$ such that $G(c_1^*, c_2^*) = 0$ and either

case 1
$$c_1^* > 0$$
 with $H(c_1^*, c_2^*) = 0$, or case 2 $c_1^* = 0$ with $H(c_1^*, c_2^*) \ge 0$,

where

$$G(c_1, c_2) := \gamma(c_1, c_2) Z^{(q)}(c_2) - \overline{Z}^{(q)}(c_2) + \frac{\mu}{q},$$

$$H(c_1, c_2) := q \left[\gamma(c_1, c_2) W^{(q)}(c_2 - c_1) - \overline{W}^{(q)}(c_2 - c_1) \right].$$

■ The (c_1^*, c_2^*) -strategy is optimal and the value function is

$$v_{c_1^*,c_2^*}(x) = -\overline{Z}^{(q)}(c_2^* - x) + \frac{\mu}{q} + \gamma(c_1^*,c_2^*)Z^{(q)}(c_2^* - x), \quad x \ge 0.$$
16 of 22

Some properties

Proposition

- Let v^{β} denote the value function corresponding to the dividend payment problem when the fixed transaction cost is β (defined as above), and
- \hat{v} the value function when there are no-transaction costs.

Then v^{β} converges to \hat{v} uniformly as $\beta \downarrow 0$.

Proposition

If $\mu := \mathbb{E}X_1 \leq 0$, we must have $c_1^* = 0$.

Numerical Results

Suppose

$$X_t - X_0 = -\mathfrak{d}t + \sigma B_t + \sum_{n=1}^{N_t} Z_n, \quad 0 \le t < \infty,$$

for some $\mathfrak{d} \in \mathbb{R}$ and $\sigma > 0$. Here

- $B = \{B_t; t \ge 0\}$ is a standard Brownian motion,
- $N = \{N_t; t \ge 0\}$ is a Poisson process with arrival rate λ , and
- $Z = \{Z_n; n = 1, 2, ...\}$ is an i.i.d. sequence of phase-type-distributed r.v. with representation (m, α, T) .

Its Laplace exponent is then

$$\psi(s) = \mathfrak{d}s + \frac{1}{2}\sigma^2 s^2 + \lambda \left(\alpha(s\mathbf{I} - \mathbf{T})^{-1}\mathbf{t} - 1\right).$$

Numerical Results

- Suppose $\{-\xi_{i,q}; i \in \mathcal{I}_q\}$ is the set of the roots of the equality $\psi(s) = q$ with negative real parts.
- If these are assumed distinct, the scale function can be written

$$\begin{split} W^{(q)}(x) &= \sum_{i \in \mathcal{I}_q} C_{i,q} \left[e^{\Phi(q)x} - e^{-\xi_{i,q}x} \right], \quad \sigma > 0, \\ W^{(q)}(x) &= \sum_{i \in \mathcal{I}_q} C_{i,q} \left[e^{\Phi(q)x} - e^{-\xi_{i,q}x} \right] + \frac{1}{\mathfrak{d}} e^{\Phi(q)x}, \quad \sigma = 0. \end{split}$$

- Here $\{\xi_{i,q}; i \in \mathcal{I}_q\}$ and $\{C_{i,q}; i \in \mathcal{I}_q\}$ are possibly complex-valued.
- We choose (m, α, T) to approximate the Weibull distribution with density function with $\alpha = 2$ and $\gamma = 1$ (obtained using the EM-algorithm).

Value functions

Convergence as $\beta \downarrow 0$

References

- [1] E. Bayraktar, A. E. Kyprianou and K. Yamazaki *On Optimal Dividends in the Dual Model.* ASTIN Bulletin, 43(3):359-372, 2013.
- [2] E. Bayraktar, A. E. Kyprianou and K. Yamazaki Optimal Dividends in the Dual Model under Transaction Costs. Insurance: Mathematics and Economics, 54:133-143, 2014.
- [3] M. Egami and K. Yamazaki *Phase-type Fitting of Scale Functions for Spectrally Negative Levy Processes*, Journal of Computational and Applied Mathematics, 264:1-22, 2014.