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Extreme risks and modeling

Extreme risks

Extreme risks: very low probabilities but disastrous

consequences.

Due to the lack of data, standard statistical methods are often

not efficient, while extreme value theory (EVT) provides a way

to study extreme risks.

Some relevant data EVT
=⇒ extreme risks

Fisher–Tippett Theorem: Let (X1,X2, . . . ,Xn) be a sequence of

i.i.d. random variables and Mn = max {X1, . . . ,Xn}. . .
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Extreme risks and modeling

Choosing risk measures

Desired properties:

1. Coherence

monotonicity: Y ≤ X =⇒ ρ(Y ) ≤ ρ(X )

sub-additivity: ρ(X + Y ) ≤ ρ(X ) + ρ(Y )

positive homogeneity: ρ(αX ) = αρ(X ) for α ≥ 0

translation invariance: ρ(X + a) = ρ(X ) + a, for some

certain amount a

2. Able to capture the tail behaviors of risks
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HG risk measure

Definition of HG risk measure

X : risk variable

q: confidence level between 0 and 1

ϕ(·): normalized Young function, non-negative, convex on

[0,∞), ϕ(0) = 0, ϕ(1) = 1 and ϕ(∞) =∞
Lϕ0 : the Orlicz heart, Lϕ0 = {X : E [ϕ(cX )] <∞ for all c > 0}

Definition. Let h be the unique solution to the equation

E
[
ϕ

(
(X − x)+

h

)]
= 1− q.

Then the Haezendonck–Goovaerts risk measure (HG risk

measure) for X ∈ Lϕ0 is defined as

Hq[X ] = inf
x∈R

(x + h) = x∗ + h∗.
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HG risk measure

Properties

It was originally motivated from the Swiss premium principle

and induced by the Orlicz norm.

For a convex Young function ϕ(·), the HG risk measure is a law

invariant and coherent risk measure.

Consider the special case with ϕ(t) = t for t ∈ R+. Then

Hq[X ] = inf
x∈R

(
x +

E
[
(X − x)+

]
1− q

)
=

1
1− q

∫ 1

q
VaRp[X ]dp,

and, thus, the HG risk measure is reduced to the well-known

Tail Value-at-Risk (TVaR).
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HG risk measure
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HG risk measure

Computation

Emphasize the tail areas; Solvency II sets the confidence level

of VaR to 0.995.

This motivates us to compute the risk measure at a high

confidence level for extreme risks.

The HG risk measure does not have an explicit expression. A

common approach is to do simulations, but

simulations do not help us to qualitatively understand the

tail behavior of a risk;

simulations are not quite efficient when the confidence

level is high.
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HG risk measure

Asymptotics

We derive asymptotics as an alternative way to study risk

measures.

Asymptotics are equivalent expressions of the risk measure as

the confidence level is very close to 1.

Asymptotic expressions provide us insights.

Asymptotic expressions are very easy to compute and it

takes almost no time to get the results.

We shall focus on the asymptotic behavior of Hq[X ] as the

confidence level q ↑ 1.



Introduction Extreme Value Theory Main Results

HG risk measure

Tang and Yang (2012, IME)

We considered a power Young function, ϕ(t) = tk , for k ≥ 1,

and derived the following:

for the Fréchet case: Hq[X ] ∼ c1F←(q)

for the Gumbel case:{
Hq[X ] ∼ F←(1− c2q), when x̂ =∞
x̂ − Hq[X ] ∼ (x̂ − F←(1− c2q)) , when x̂ <∞

for the Weibull case: x̂ − Hq[X ] ∼ c3 (x̂ − F←(q))
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Extreme value theory

Convergence of Maxima

Convergence of sums — the central limit theorem

Convergence of maxima — EVT

Consider a sequence of i.i.d. random variables (X1,X2, ...,Xn)

with the distribution function F . Denote

Mn = max {X1,X2, ...,Xn} the block maxima.

The central result of EVT studies how the df of the normalized

Mn converges.
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Extreme value theory

Fisher–Tippett theorem

A df F is said to belong to the max-domain of attraction (MDA)

of a df G, denoted by F ∈ MDA (G), if

lim
n→∞

Pr ((Mn − dn) /cn ≤ x) = G(x)

holds for some norming constants cn > 0 and dn ∈ R, n ∈ N.

By the classical Fisher–Tippett theorem (see Fisher and Tippett

(1928) and Gnedenko (1943, Ann. of Math.)), G has to be the

generalized extreme value (GEV) distribution, whose standard

structure is given by

Gγ(x) = exp
{
− (1 + γx)−1/γ

}
, 1 + γx > 0, γ ∈ R,

where for γ = 0 the right-hand side is exp {−e−x}.
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Extreme value theory

Extended regular variation

Definition A positive measurable function f (·) is said to be

extended regularly varying with index γ ∈ R, denoted by

f (·) ∈ ERVγ , if there exists an auxiliary function a(·) > 0 such

that, for all y > 0,

lim
x→∞

f (xy)− f (x)

a(x)
=

yγ − 1
γ

.

When γ = 0, the right-hand side is interpreted as log y .

The auxiliary function a(·) is often chosen to be

a(x) =


γf (x), γ > 0,
f (x)− x−1 ∫ x

0 f (s)ds, γ = 0,
−γ(f (∞)− f (x)), γ < 0.
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Extreme value theory

MDA of the GEV distribution

Define U(·) as the quantile/inverse function of 1/F ,

U(t) =

(
1
F

)←
(t) = F←

(
1− 1

t

)
.

F ∈ MDA(Gγ) if and only if U ∈ ERVγ , where

Gγ =


Φ1/γ , γ > 0 (Fréchet),
Λ, γ = 0 (Gumbel),
Ψ−1/γ , γ < 0 (Weibull).
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Introduction

Challenges of the problem

Recall the definition of the HG risk measure.

E
[
ϕ

(
(X − x)+

h

)]
= 1− q.

The HG risk measure Hq[X ] = infx∈R(x + h).

For power Young functions in the previous section:

h =

(
E
[
(X − x)k

+

]
1− q

)1/k

.

However, for a general Young function in this section:

We have to deal with the implicit function of h throughout the

work.
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Main results

Assumptions

Assmptions for the Young function ϕ(·):
ϕ(·) ∈ RVα(0+) ∩ RVβ(∞) for some 1 < α, β <∞
strictly convex and continuously differentiable in [0,∞)

ϕ′+(0) = 0

Assmptions for the risk variable X :

X ∈ Lϕ0
F ∈ MDA(Gγ) with −∞ < γ < α−1 ∧ β−1
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Main results

Main Result

Define a positive random variable Y distributed by

Pr(Y ≤ y) = 1− (1 + γy)−1/γ

for all y > 0 such that 1 + γy > 0.

Let k be the unique positive solution of the equation

E
[
ϕ′ (kY )

]
= E

[
ϕ′ (kY ) kY

]
.

As q ↑ 1, the HG risk measure is given by Hq[X ] = x∗ + h∗,

where

F (x∗) ∼
1− q

E [ϕ (kY )]
and h∗ ∼

a(1/F (x∗))

k
.
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Main results

The Fréchet case

Corollary As q ↑ 1,

(i) γ > 0:

Hq[X ] ∼
(

1 +
γ

k

)(∫ ∞
0

(
1 +

γ

k
z
)−1/γ

dϕ (z)

)γ
VaRq[X ];
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Main results

The Gumbel case

(ii) γ = 0:

if x̂ =∞ then

Hq[X ] ∼ F←
(

1− 1− q∫∞
0 e−z/k dϕ (z)

)
,

while if x̂ <∞ then

x̂ − Hq[X ] ∼ x̂ − F←
(

1− 1− q∫∞
0 e−z/k dϕ (z)

)
;
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Main results

The Weibull case

(iii) γ < 0:

x̂ − Hq[X ] ∼
(

1 +
γ

k

)(∫ −k/γ

0

(
1 +

γ

k
z
)−1/γ

dϕ (z)

)γ
(x̂ − VaRq[X ]) .
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Main results

Key steps

Hq[X ] = x∗ + h∗

a(·): the auxiliary function

t∗ = 1/F (x∗)

Step 1. As q ↑ 1, we have x∗ ↑ x̂ .

Step 2. As q ↑ 1, we have a(t∗) � h∗.

Step 3. limq↑1 a(t∗)/h∗ = k .
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Numerical Examples

An example with exact solution for comparison

In order to get the exact value of Hq[X ], we choose the Young

function as

ϕ(t) =
t2.2 + t1.1

2
.

By the quadratic formula, we can solve h as

h=

E
[
(X − x)1.1

+

]
+

√(
E
[
(X − x)1.1

+

])2
+8(1− q)E

[
(X − x)2.2

+

]
4(1− q)

1/1.1

.

Solve x∗ from the equation h′(x∗) = −1.
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Numerical Examples

The Fréchet case

Graph 1. F = Pareto(α = 2.4 & 2.7, θ = 1)
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Numerical Examples

The Gumbel case

Graph 2. F = Lognormal(µ = 2, σ = 0.5)
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Numerical Examples

The Weibull case

Graph 3. F = Beta(a = 2,b = 6 & 8)
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Numerical Examples

Thank you very much for your attention!
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