Extreme Value Analysis of the Haezendonck–Goovaerts Risk Measure with a General Young Function^[1]

Fan Yang University of Waterloo

The 8th Samos Conference in Actuarial Science and Finance University of the Aegean

May 31, 2014

¹Based on a joint work with Qihe Tang

・ロト・日本・日本・日本・日本

Outline

- 1. Extreme risks and the HG risk measure
- 2. Brief introduction to Extreme Value Theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

3. Main results

Introduction ●ooooooo	Extreme Value Theory	Main Results
Extreme risks and modeling		
Extreme risks		

Extreme risks: very low probabilities but disastrous consequences.

(ロ) (同) (三) (三) (三) (○) (○)

Extreme risks and modeling

Extreme risks

Extreme risks: very low probabilities but disastrous consequences.

Due to the lack of data, standard statistical methods are often not efficient, while extreme value theory (EVT) provides a way to study extreme risks.

Some relevant data $\stackrel{\text{EVT}}{\Longrightarrow}$ extreme risks

Extreme risks and modeling

Extreme risks

Extreme risks: very low probabilities but disastrous consequences.

Due to the lack of data, standard statistical methods are often not efficient, while extreme value theory (EVT) provides a way to study extreme risks.

Some relevant data $\stackrel{\text{EVT}}{\Longrightarrow}$ extreme risks

Fisher–Tippett Theorem: Let $(X_1, X_2, ..., X_n)$ be a sequence of i.i.d. random variables and $M_n = \max \{X_1, ..., X_n\}$...

A D F A 同 F A E F A E F A Q A

Extreme risks and modeling

Choosing risk measures

Desired properties:

- 1. Coherence
 - monotonicity: $Y \leq X \Longrightarrow \rho(Y) \leq \rho(X)$
 - sub-additivity: $\rho(X + Y) \le \rho(X) + \rho(Y)$
 - positive homogeneity: $\rho(\alpha X) = \alpha \rho(X)$ for $\alpha \ge 0$
 - translation invariance: ρ(X + a) = ρ(X) + a, for some certain amount a
- 2. Able to capture the tail behaviors of risks

HG risk measure

Definition of HG risk measure

- X: risk variable
- q: confidence level between 0 and 1
- $\varphi(\cdot)$: normalized Young function, non-negative, convex on $[0,\infty), \varphi(0) = 0, \varphi(1) = 1$ and $\varphi(\infty) = \infty$
- L_0^{φ} : the Orlicz heart, $L_0^{\varphi} = \{X : E[\varphi(cX)] < \infty \text{ for all } c > 0\}$

Definition. Let *h* be the unique solution to the equation

$$\operatorname{E}\left[\varphi\left(\frac{(X-x)_{+}}{h}\right)\right]=1-q.$$

Then the Haezendonck–Goovaerts risk measure (HG risk measure) for $X \in L_0^{\varphi}$ is defined as

$$H_q[X] = \inf_{x \in \mathbb{R}} (x+h) = x_* + h_*.$$

It was originally motivated from the Swiss premium principle and induced by the Orlicz norm.

For a convex Young function $\varphi(\cdot)$, the HG risk measure is a law invariant and coherent risk measure.

Consider the special case with $\varphi(t) = t$ for $t \in \mathbb{R}_+$. Then

$$H_q[X] = \inf_{x \in \mathbb{R}} \left(x + \frac{\mathrm{E}\left[(X - x)_+ \right]}{1 - q} \right) = \frac{1}{1 - q} \int_q^1 \mathrm{VaR}_p[X] \mathrm{d}p,$$

and, thus, the HG risk measure is reduced to the well-known Tail Value-at-Risk (TVaR).

HG risk measure

Literature review

- Haezendonck and Goovaerts (1982, IME)
- Goovaerts, Kaas, Dhaene and Tang (2004, IME)
- Bellini and Rosazza Gianin (2008a, J. of Banking and Finance; 2008b, Stat. Decis.; 2012, IME)
- Nam, Tang and Y. (2011, IME)
- Tang and Y. (2012, IME)
- Goovaerts, Linders, Van Weert and Tank (2012, IME)
- Mao and Hu (2012, IME)
- Ahn and Shyamalkumar (2014, IME)

Introduction	Extreme Value Theory	Main Results
HG risk measure		
Computation		

Emphasize the tail areas; Solvency II sets the confidence level of VaR to 0.995.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Emphasize the tail areas; Solvency II sets the confidence level of VaR to 0.995.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

This motivates us to compute the risk measure at a high confidence level for extreme risks.

Computation

Emphasize the tail areas; Solvency II sets the confidence level of VaR to 0.995.

This motivates us to compute the risk measure at a high confidence level for extreme risks.

The HG risk measure does not have an explicit expression. A common approach is to do simulations, but

- simulations do not help us to qualitatively understand the tail behavior of a risk;
- simulations are not quite efficient when the confidence level is high.

HG risk measure

Asymptotics

We derive asymptotics as an alternative way to study risk measures.

Asymptotics are equivalent expressions of the risk measure as the confidence level is very close to 1.

- Asymptotic expressions provide us insights.
- Asymptotic expressions are very easy to compute and it takes almost no time to get the results.

We shall focus on the asymptotic behavior of $H_q[X]$ as the confidence level $q \uparrow 1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

HG risk measure

Tang and Yang (2012, IME)

We considered a power Young function, $\varphi(t) = t^k$, for $k \ge 1$, and derived the following:

- for the Fréchet case: $H_q[X] \sim c_1 F^{\leftarrow}(q)$
- for the Gumbel case: $\begin{cases}
 H_q[X] \sim F^{\leftarrow}(1 - c_2 q), & \text{when } \hat{x} = \infty \\
 \hat{x} - H_q[X] \sim (\hat{x} - F^{\leftarrow}(1 - c_2 q)), & \text{when } \hat{x} < \infty
 \end{cases}$
- for the Weibull case: $\hat{x} H_q[X] \sim c_3 (\hat{x} F^{\leftarrow}(q))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. Extreme risks and the HG risk measure
- 2. Brief introduction to Extreme Value Theory
- 3. Main results

Introduction

Extreme Value Theory

Main Results

Extreme value theory

Convergence of Maxima

• Convergence of sums — the central limit theorem

A D F A 同 F A E F A E F A Q A

Extreme value theory

Convergence of Maxima

- Convergence of sums the central limit theorem
- Convergence of maxima EVT

Consider a sequence of i.i.d. random variables $(X_1, X_2, ..., X_n)$ with the distribution function *F*. Denote $M_n = \max \{X_1, X_2, ..., X_n\}$ the block maxima.

The central result of EVT studies how the df of the normalized M_n converges.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Extreme value theory

Fisher–Tippett theorem

A df *F* is said to belong to the max-domain of attraction (MDA) of a df *G*, denoted by $F \in MDA(G)$, if

$$\lim_{n\to\infty} \Pr\left(\left(M_n-d_n\right)/c_n\leq x\right)=G(x)$$

holds for some norming constants $c_n > 0$ and $d_n \in \mathbb{R}$, $n \in \mathbb{N}$.

Extreme value theory

Fisher–Tippett theorem

A df *F* is said to belong to the max-domain of attraction (MDA) of a df *G*, denoted by $F \in MDA(G)$, if

$$\lim_{n\to\infty} \Pr\left(\left(M_n-d_n\right)/c_n\leq x\right)=G(x)$$

holds for some norming constants $c_n > 0$ and $d_n \in \mathbb{R}$, $n \in \mathbb{N}$.

By the classical Fisher–Tippett theorem (see Fisher and Tippett (1928) and Gnedenko (1943, Ann. of Math.)), *G* has to be the generalized extreme value (GEV) distribution, whose standard structure is given by

$$G_{\gamma}(x) = \exp\left\{-(1+\gamma x)^{-1/\gamma}
ight\}, \qquad 1+\gamma x > 0, \gamma \in \mathbb{R},$$

where for $\gamma = 0$ the right-hand side is $\exp\{-e^{-x}\}$,

Extreme value theory

Extended regular variation

Definition A positive measurable function $f(\cdot)$ is said to be extended regularly varying with index $\gamma \in \mathbb{R}$, denoted by $f(\cdot) \in \text{ERV}_{\gamma}$, if there exists an auxiliary function $a(\cdot) > 0$ such that, for all y > 0,

$$\lim_{x\to\infty}\frac{f(xy)-f(x)}{a(x)}=\frac{y^{\gamma}-1}{\gamma}.$$

When $\gamma = 0$, the right-hand side is interpreted as log *y*. The auxiliary function $a(\cdot)$ is often chosen to be

$$a(x) = \begin{cases} \gamma f(x), & \gamma > 0, \\ f(x) - x^{-1} \int_0^x f(s) \mathrm{d}s, & \gamma = 0, \\ -\gamma (f(\infty) - f(x)), & \gamma < 0. \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extreme value theory

MDA of the GEV distribution

Define $U(\cdot)$ as the quantile/inverse function of $1/\overline{F}$,

$$U(t) = \left(\frac{1}{\overline{F}}\right)^{\leftarrow}(t) = F^{\leftarrow}\left(1-\frac{1}{t}\right).$$

 $F \in MDA(G_{\gamma})$ if and only if $U \in ERV_{\gamma}$, where

$$G_{\gamma} = \left\{ egin{array}{ll} \Phi_{1/\gamma}, & \gamma > 0 & ({
m Fréchet}), \ \Lambda, & \gamma = 0 & ({
m Gumbel}), \ \Psi_{-1/\gamma}, & \gamma < 0 & ({
m Weibull}). \end{array}
ight.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. Extreme risks and the HG risk measure
- 2. Brief introduction to Extreme Value Theory
- 3. Main results

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

Challenges of the problem

Recall the definition of the HG risk measure.

$$\operatorname{E}\left[\varphi\left(\frac{(X-X)_{+}}{h}\right)\right]=1-q.$$

The HG risk measure $H_q[X] = \inf_{x \in \mathbb{R}} (x + h)$.

For power Young functions in the previous section:

$$h = \left(\frac{\mathrm{E}\left[(X-x)_{+}^{k}\right]}{1-q}\right)^{1/k}$$

However, for a general Young function in this section: We have to deal with the implicit function of *h* throughout the work.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Main results

Assumptions

- Assmptions for the Young function $\varphi(\cdot)$:
 - $\varphi(\cdot) \in \mathrm{RV}_{\alpha}(0+) \cap \mathrm{RV}_{\beta}(\infty)$ for some $1 < \alpha, \beta < \infty$
 - strictly convex and continuously differentiable in $[0,\infty)$

•
$$\varphi'_+(0) = 0$$

• Assmptions for the risk variable X:

- $X \in L_0^{\varphi}$
- $F \in \text{MDA}(G_{\gamma})$ with $-\infty < \gamma < \alpha^{-1} \land \beta^{-1}$

Introduction 00000000	Extreme Value Theory	Main Results ○○●○○○○○○○○
Main results		
Main Result		

Define a positive random variable Y distributed by

$$\Pr(Y \le y) = 1 - (1 + \gamma y)^{-1/\gamma}$$

for all y > 0 such that $1 + \gamma y > 0$.

Let *k* be the unique positive solution of the equation

 $\mathbf{E}\left[\varphi'\left(\boldsymbol{k}\boldsymbol{Y}\right)\right] = \mathbf{E}\left[\varphi'\left(\boldsymbol{k}\boldsymbol{Y}\right)\boldsymbol{k}\boldsymbol{Y}\right].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Extreme Value Theory	Main Results ○o●ooooooooo
Main results		
Main Result		

Define a positive random variable Y distributed by

$$\Pr(Y \le y) = 1 - (1 + \gamma y)^{-1/\gamma}$$

for all y > 0 such that $1 + \gamma y > 0$.

Let *k* be the unique positive solution of the equation

 $\mathbf{E}\left[\varphi'\left(\boldsymbol{k}\boldsymbol{Y}\right)\right] = \mathbf{E}\left[\varphi'\left(\boldsymbol{k}\boldsymbol{Y}\right)\boldsymbol{k}\boldsymbol{Y}\right].$

As $q \uparrow 1$, the HG risk measure is given by $H_q[X] = x_* + h_*$, where

$$\overline{F}(x_*) \sim rac{1-q}{\mathrm{E}\left[\varphi\left(kY
ight)
ight]}$$
 and $h_* \sim rac{a(1/\overline{F}(x_*))}{k}$.

Introd	uction
	0000

Main results

The Fréchet case

Corollary As $q \uparrow 1$,

(i) $\gamma > 0$:

$$H_{q}[X] \sim \left(1 + \frac{\gamma}{k}\right) \left(\int_{0}^{\infty} \left(1 + \frac{\gamma}{k}z\right)^{-1/\gamma} \mathrm{d}\varphi(z)\right)^{\gamma} \mathrm{VaR}_{q}[X];$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Main Results

Main results

The Gumbel case

(ii) $\gamma = 0$: if $\hat{x} = \infty$ then

$$H_q[X] \sim F^{\leftarrow} \left(1 - \frac{1-q}{\int_0^\infty e^{-z/k} \mathrm{d}\varphi(z)}\right),$$

while if $\hat{\mathbf{x}} < \infty$ then

$$\hat{x} - H_q[X] \sim \hat{x} - F^{\leftarrow} \left(1 - \frac{1-q}{\int_0^\infty e^{-z/k} \mathrm{d}\varphi(z)}\right);$$

Introduction	

/!!!

Extreme Value Theory

Main results

The Weibull case

. .

$$\hat{x} - H_q[X] \sim \left(1 + \frac{\gamma}{k}\right) \left(\int_0^{-k/\gamma} \left(1 + \frac{\gamma}{k}z\right)^{-1/\gamma} \mathrm{d}\varphi(z)\right)^{\gamma} \left(\hat{x} - \mathrm{VaR}_q[X]\right).$$

- * ロ * * 個 * * 目 * * 目 * ● ● ● ● ●

Introduction	Extreme Value Theory	Main Results ○○○○○●○○○○○
Main results		
Key steps		

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $H_q[X] = x_* + h_*$
- $a(\cdot)$: the auxiliary function
- $t_* = 1/\overline{F}(x_*)$
- **Step 1.** As $q \uparrow 1$, we have $x_* \uparrow \hat{x}$.
- **Step 2.** As $q \uparrow 1$, we have $a(t_*) \asymp h_*$.
- **Step 3.** $\lim_{q\uparrow 1} a(t_*)/h_* = k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Numerical Examples

An example with exact solution for comparison

In order to get the exact value of $H_q[X]$, we choose the Young function as

$$\varphi(t) = \frac{t^{2.2} + t^{1.1}}{2}.$$

By the quadratic formula, we can solve *h* as

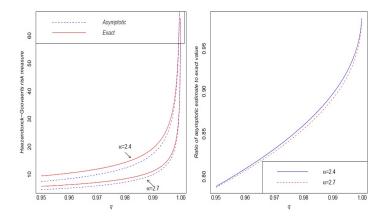
$$h = \left(\frac{\mathrm{E}\left[(X-x)^{1.1}_+\right] + \sqrt{\left(\mathrm{E}\left[(X-x)^{1.1}_+\right]\right)^2 + 8(1-q)\mathrm{E}\left[(X-x)^{2.2}_+\right]}}{4(1-q)}\right)^{1/1.1}.$$

Solve x_* from the equation $h'(x_*) = -1$.

Numerical Examples

The Fréchet case

Graph 1. F = Pareto(α = 2.4 & 2.7, θ = 1)

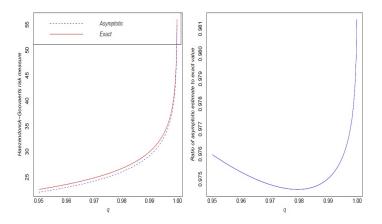


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical Examples

The Gumbel case

Graph 2. $F = \text{Lognormal}(\mu = 2, \sigma = 0.5)$



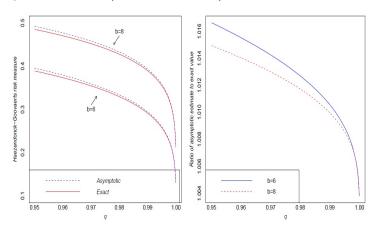
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main Results ○○○○○○○○○●○

Numerical Examples

The Weibull case

Graph 3. *F* = Beta(*a* = 2, *b* = 6 & 8)



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Numerical Examples

Thank you very much for your attention!