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Abstract

This article proposes a new micro-data stochastic model to estimate the quantity of
IBNR claims. The model is stated in terms of the distribution of the time-to-report
of claims with same occurrence day, conditional to the total number of claims
occurred in that day. The main difficulty lies in the truncated data from the number
of claims and the corresponding times to report. The model considers a mixture
of exponential distributions to describe the time to report. We develop an EM
algorithm to obtain the maximum likelihood estimates of parameters for the case
of a simple exponential model and use an ordinary non-linear search algorithm for
the mixture model. We present a case study with DPVAT —Compulsory Limited
Motor Third-Party Liability —Brazilian insurance data where we compare the
forecast ability of the proposed model to other micro-data models and run-off
triangle based methods.

1 Introduction

There is a large literature on techniques for calculating IBNR reserves. Taylor et al.
(2003) classifies the methods as deterministic or stochastic, as dynamic or static
and as phenomenological or micro-structural, with optimal or heuristic parameters
estimation. From the combination of these characteristics, models are organized in
a evolution diagram akin to a Darwinian tree of life. The observed evolution goes
from deterministic to stochastic, heuristic to optimal estimation, static to dynamic
and phenomenological to micro-structural. Two characteristics are emphasized:
dynamism and micro-structural structure. The authors stress that the triangle in
which traditional methodologies are based present just a summary, while raw data
can provide much more information.

Following the aforementioned classification, the model proposed in this article
is stochastic, with optimal parameters estimation, dynamic and based on micro-
data. The model aims to estimate the quantity of IBNYR claims, or true IBNR
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claims or, further, Pure IBNR claims. The main variables of the model are: number
of claims occurred in each day, time between occurrence and report to the insurer
and number of reported claims until the last date in the sample.

Existing literature on micro-data based models is very limited. Our work
borrows elements from the approaches proposed by Parodi (2013), Weissner (1978)
and Antonio and Plat (2012), but presents crucial differences. Firstly, our approach
can be viewed more as framework to conjointly model the problem variables,
allowing the assignment of a variety of different distributions both to the number
of claims and the time to report. Also, we develop maximum likelihood estimation
procedures that conjointly take all information about the variables into account.
Finally, we adopt a time series approach and compare performance according to
their forecasting abilities.

In this article, we develop our approach by assuming two different
distributions to model the time report of claim. In the simplest case, we use a
simple exponential distribution as in (Weissner, 1978). For this particular case, we
develop a very efficient EM algorithm. In a second version, we adopt a mixture
of two exponential distributions to model the time to report. For this case, we
develop a non-linear search procedure.

The approach was put into test in a forecast experiment with DPVAT
—Compulsory Limited Motor Third-Party Liability —data, with 11 years of
reported claims in a daily basis. This is a highly non-stationary phenomenon due
frequent changes in the regulation. Also, the level of public awareness of accident
victims coverage by DPVAT insurance has changed greatly due to massif publicity.
The result is that the number of reported claims has been increasing constantly.

In the experiment, we adopt an adaptive procedure in order to take into account
the time variability of the parameters, using gliding estimation windows. The
performances of our approach and of some triangle-based methods —organized
in (Schmidt and Zocher, 2008) —were compared over forecasting horizons from
one to three years. In this particular application, our model showed superior
performance for short forecasting horizons, but otherwise no evidence of
superiority when compared traditional methods for longer horizons.

The remainder of the paper is organized as follows: section 2 discusses
and presents out modeling approach as well as two versions of the model and
the corresponding estimation procedures. Section 3 presents the performance
measures. Section 4 presents a real world application of the model and compares
it to the traditional triangle-based approaches and section 5 concludes the paper.

2 Methodology

The proposed model was initially inspired in the model presented by Weissner
(1978), who treats the problem of observed data truncation. Weissner proposes to
fit truncated distributions to the delay data using maximum likelihood. However,
the likelihood function that he considers does not include the fact that the amount
of claims already reported until the moment of truncation is also a random
variable. Another method that inspired the proposed model was presented by
Antonio and Plat (2012) and it does not address the problem of truncation. Thus,
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the estimated delay distribution must submit a artificially high likelihood for short
delays. This problem was treated by Parodi (2013) that presents a way to fix
it through the relationship between the complete distribution and the truncated
distribution of delays. However, this correction can require very complicated
calculations depending on the distribution adopted for adjustment.

In this work, these issues were treated in an integrated way. The number
of reported claims was modeled by a binomial distribution and the reporting
delay was modeled as a truncated distribution. Moreover, the total number of
occurred claims is modeled by the Poisson distribution, that directly gives us the
distribution of the amount of IBNR claims. The choice of Poisson distribution
for modeling the total amount of occurred claims and Binomial distribution for
modeling the number of reported claims until the moment of truncation, in
addition to find justification in the fundamental concepts of each distribution, save
a relationship that enables the accounts of the likelihood function adopted. The
choice of the delays distribution is free. In this work we consider exponential
distribution and a mixture of exponential distributions to delays modeling.

2.1 Formalization

Let d be a variable that represents the occurrence period of claim and D the
maximum observable occurrence period in the sample, with d = 1, . . . , D. Now
consider a window of occurrence periods with length J ≤ D and occurrence
periods contained in this window identified by t = 1, . . . , J. The last occurrence
period of this window will always be one of the observable occurrence period, by
this way this window can contain since the occurrence periods interval d = 1, . . . , J
until d = D − J + 1, . . . , D. Then it is a sliding window that will run all observable
occurrence days of the data to obtain the new parameter estimates of the proposed
model as we traverse these days of occurrence. The figure 1 illustrates the sliding
window of data used to estimate the vector of all needed parameters to model the
phenomenon for each occurrence day, θ̂d:

Figure 1: Sliding data window
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Notation:

Tt: the maximum observable delay of reporting of the claims occurred at
the period t;
Nt: the number of claims occurred at each period t;
Kt: random variable that represents the number of claims occurred at the period t
reported until Tt;
Γt = (Γt,1, . . . , Γt,Nt): random vector of all observable delays of the claims
occurred at the period t;
ΓI,t = (Γt,1, . . . , Γt,Kt): random vector of all non-observable delays of reported
claims occurred at the period t;
ΓI I,t = (Γt,Kt+1, . . . , Γt,Nt): random vector of all delays of the claims yet to be
reported occurred at t;

T = (T1, . . . , TJ): random vector of all maximum observable delays;
N = (N1, . . . , NJ): random vector of the total quantity of claims occurred by
period;
K = (K1, . . . , KJ): random vector of all reported claims by occurrence period;
Γ = (Γ1, . . . , ΓJ): random vector of all delays;

nt: non observable number of the total of claims occurred at t(ultimate);
kt: observable number of reported claims until T with origin at t;
τt = (τt,1, . . . , τt,Nt): random vector of all delays of all the claims occurred in the
period t;
τI,t = (τt,1, . . . , τt,Kt): random vector of all delays of all the claims reported
occurred in the period t;
τI I,t = (τt,Kt+1, . . . , τt,Nt): random vector of all delays of claims yet to be reported
occurred at t;

λ: vector of parameters of the delay distribution;
γt: vector of parameters of the distribution of the number of claims occurred at
t,Nt.

The joint distribution of random variables delay, number of claims reported
and total number of claims occurred in the period t:

fΓt,Kt,Nt (τt, kt, nt; λ, γ, Tt) = fΓt/Kt = kt, Nt = nt
(τt; λ, Tt)

× fKt/Nt = nt
(kt; λ, Tt)

× fNt (nt; γ)

(1)

The parameters estimation process adopted in this work depends on the
delays distribution choice. For the exponential delay distribution the parameters
estimates are found by maximizing likelihood function using the EM algorithm.
The model of delays as a mixture of two exponential distributions has the
parameters estimated through maximization of the likelihood function using a
nonlinear search algorithm implemented in Matlab.
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2.2 Exponential delay model with estimation by EM algorithm

If all possible delay of reporting for claims occurred in J periods were observable
we would have complete data and the likelihood function of the delay distribution
parameters and the total number of claims distribution for claims occurred in
these J periods would be:

L (λ, γ/Γ, K, N; T) =
J

∏
t=1

fΓt,Kt,Nt (τt, kt, nt; λ, γ, Tt)

=
J

∏
t=1

fΓt/Kt = kt, Nt = nt
(τt; λ, Tt) fKt/Nt = nt

(kt; λ, Tt) fNt (nt; γ)

(2)

where:
fΓt/Kt = kt , Nt = nt

(τt; λ, Tt): delay distribution given the quantity of claims reported
until Tt, kt, and the total of claims occurred at t, nt;
fKt/Nt = nt

(kt; λ, Tt): the distribution of the probability of observe Kt claims notified
until Tt;
fNt (nt; γ): distribution of total of claims occurred at t.

This model contains many non-observable components. The total quantity of
occurred claims, Nt, is a non-observable component of the model. Other non-
observable components are the delays of claims that was not yet reported. The
number of claims to be reported is the IBNR quantity that we wish to estimate. To
maximize the likelihood function we can use the EM(Expectation−Maximization)
algorithm.

The EM Algorithm was proposed by DempsterDempster et al. (1977) and it
is a iterative method to find estimates of maximum likelihood to parameters
of a statistical model, when the model depends on non-observable variables.
The interaction of EM alternates between a E-step of calculation of expectation,
which creates an expectation function of the log-likelihood evaluated using the
current values of the parameters estimates, and a M-step of maximization, which
calculates the parameters by the maximization of the log-likelihood expected
function obtained in the E-step. These parameters estimates are then used to
determine the distribution of the latent variables in the next E-step. The equations
that represent the E-step and M-step are:

E–step:

Q
(

θ, θ(i)
)
= E

[
l (θ/X, Y) | X = x, θ(i)

]
(3)

M-step:

θ(i+1) = arg max
θ

Q
(

θ, θ(i)
)

(4)

where,
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θ(i): vector of current parameters estimates of the model of interest;
θ: parameters vector to be estimated.

After the definition of theoretical densities that correspond to the functions
fΓt/Kt = kt , Nt = nt

(τt; λ, Tt), fKt/Nt = nt
(kt; λ, Tt) and fNt (nt; γ), we can obtain the

equations to estimate the vector θ composed by delay parameters and total number
of claims occurred by period.

The theoretical densities defined are: the Poisson density with parameter γ

for variable Nt, exponential density with parameter λ for the delays τt and the
binomial density that depends on both parameters γ e λ for the variable Kt. So,
the vector θ is composed by λ and γ. Doing all required calculations we obtain:

The estimator of Nt(the quantity of claims occurred in the period t):

n̂t,{Nt≥kt;λ(i),γ(i)} = γ(i)Fτt(Tt; λ(i)) + kt (5)

where Fτt(Tt; λ(i)) is the probability of the delay be greater than the maximum
observable delay Tt. So, the estimator of total quantity of claim for each occurrence
period t is well defined as a percentage of the expected value of the distribution
of total quantity of occurred claims which is expected that will be reported with
greater delay than the maximum observable delay, Tt, added to the amount of
claims occurred in t and reported with a delay less than or equal to Tt.

Calculations made to obtain the estimators n̂t,{Nt≥kt;λ(i),γ(i)}, shown above, can
be found in Souza (2013).

The update equation to estimate γ is given by:

γi+1 =
1
J

J

∑
t=1

n̂t,{Nt≥kt;λ(i),γ(i)} (6)

The estimator of γ is just the average of estimates of total of claims occurred in
each window time, t = 1, . . . , J.

The update equation for estimation of λ:

1
λi+1 =

Jτ̄. + ∑
J
t=1{

(
Tt +

1
λ(i)

)
(n̂t,{Nt≥kt;λ(i),γ(i)} − kt)}

Jn̄
(7)

where, τ̄. =
1
J ∑

J
t=1 ∑

kt
j=1 τt,j e n̄ = 1

J ∑
J
t=1 n̂{Nt≥kt;λ(i),γ(i)}.

The equation above is presented in terms of inverse of λ to be more interpretive.
Therefore, the update equation of the estimate λ is the inverse of weighted average
between the observable delays and estimated delays for claims not reported.
The update equations will be used in the iterative process of EM algorithm. To start
the process the definition of initial values, γ(0) and λ(0), is needed. The iterations
are discontinued when λ(i+1)− λ(i)

< ε and γ(i+1) − γ(i)
< ξ, with ε and ξ as small

as you want.
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The calculations to obtain the EM algorithm update equations can be found in
Souza (2013).

2.3 Model of delays as mixture of exponential distributions

Further on exponential distribution, other distributions can be adjusted to delay
distribution in the proposed model. It was tested the fit of the mixture of
exponential, in addition to exponential distribution for delays. This mixture is
defined by:

fτt(τt; λ1, λ2, α) = αλ1e−λ1τt + (1 − α)λ2e−λ2τt (8)

also used in the conditional form to observable data:

fτt/τt ≤ Tt
(τt; λ1, λ2, α) =

αλ1e−λ1τt + (1 − α)λ2e−λ2τt

1 − αe−λ1Tt − (1 − α)e−λ2Tt
(9)

The likelihood function for incomplete data of the proposed model is:

L(λ, γ) =
J

∏
t=1

{
kt

∏
i=1

fτt(τt,i; λ)

1 − Fτt(Tt; λ)

}
∞

∑
n=kt

n!
kt!(n − kt)!

(1− Fτt(Tt; λ))kt(Fτt(Tt; λ))n−kt
λne−γ

n!
(10)

where Fτt(Tt; λ) is the probability of delay be greater than the maximum observable
delay Tt.

The log-likelihood function to be maximized is:

l(λ, γ) =
J

∑
t=1

kt

∑
i=1

ln fτ(τt,i, λ) +
J

∑
t=1

[ktlnγ + Fτt(kt; λ)γ − lnkt! − γ] (11)

The maximization of the log-likelihood function concerns to parameter γ

produces the following estimator:

γ̂ =
k.

J − ∑
J
t=1(Fτt(Tt; λ))

(12)

where, k. = ∑
J
t=1 kt. The derivatives of the log-likelihood function in relation to

each delay distribution parameter are:

∂l(λ, γ)

∂λ1
=

J

∑
t=1

kt

∑
i=1

αe−λ1τt,i(1 − λ1τt,i)

αλ1e−λ1τt,i + (1 − α)λ2e−λ2τt,i
−

J

∑
t=1

Ttαe−λ1Ttγ (13)

∂l(λ, γ)

∂λ2
=

J

∑
t=1

kt

∑
i=1

(1 − α)e−λ2τt,i(1 − λ2τt,i)

αλ1e−λ1τt,i + (1 − α)λ2e−λ2τt,i
−

J

∑
t=1

Tt(1 − α)e−λ2Ttγ (14)

∂l(λ, γ)

∂α
=

J

∑
t=1

kt

∑
i=1

λ1e−λ1τt,i − λ2e−λ2τt,i

αλ1e−λ1τt,i + (1 − α)λ2e−λ2τt,i
+

J

∑
t=1

(e−λ1Tt − e−λ2Tt)γ (15)
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If the derivatives above we equalized to zero, is notable that is not possible to
isolate the parameters of the delay distribution in order to obtain an analytical
expression for each estimator. So, to find the estimates of these parameters, the
log-likelihood function above was maximized in relation to each parameter by
nonlinear algorithm fmincon of Matlab software, using the derivatives above to
compose the gradient. The parameter γ was estimated iteratively, by following
steps:
1- An initial value to γ is chosen;
2- With the value of γ fixed, the parameters of the delay distribution are find
according to the explanation above;
3- A new γ is found using the estimated parameters of delay distribution;
4- If the difference between the new γ and the previous γ is greater than a certain
ε, return to step 2.

2.4 Update of parameter estimates X data truncation

For the last occurrence days, there is few observed data to fit delay curves.
Furthermore, the observable delays are very short. These facts make it difficult
to estimate a distribution that represents the delays that will be observed in these
days by the maximum likelihood method. According to Al-Athari (2008) the
maximum likelihood estimator of exponential distribution parameter only exists
if the sample average is less than a half of the term until the truncation of data.
Because of it, the estimate of λ was replaced by his last estimated value when the
expected average, 1/λ̂, becomes larger than a half of truncation term. When the
delay distribution is a mixture of exponential, a similar rule is adopted. When the
expected mean of one of the exponential distributions of the mixture exceeds a half
of the term truncation of the occurrence day, the value estimated to the λ and to
the α that combine the estimated distributions of previous day is repeated until the
last occurrence day of the data.

2.5 Quantity of IBNR claims estimator

According to the model specification, the total amount of occurred claims in every
period d, Nd, follows a Poisson distribution with parameter γd. However, the
distribution of Nd given the known information in the last observable instant
is unknown. Since the amount Nd given the known information is estimated
by his expectancy and given that (Nd − Kd) | {Nd ≥ kd, Kd = kd} ∼
Poisson(γd Fτd

(Td; λd)), we have:

N̂d =E [Nd | Nd ≥ kd, Kd = kd]

=E [(Nd − Kd) | Nd ≥ kd, Kd = kd] + E [Kd | Kd = kd]

=γ̂dFτd
(Td; λd) + kd

(16)

where γ̂d is the estimate of γ when the data window is composed by occurrence
days t = d − J + 1, . . . , d, with J ≤ d ≤ D. The demonstration of the distribution
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of (Nd − Kd) | {Nd ≥ kd, Kd = kd} is also found in Souza (2013).
The amount of IBNR claims in the occurrence period d will be estimated by:

Q̂d =N̂d − kd

=γ̂dFτd
(Td; λd) + kd − kd

=γ̂dFτd
(Td; λd)

(17)

Therefore, the total IBNR amount Q̂ is estimated by

D

∑
d=1

Q̂d (18)

2.6 Distribution of the amount of IBNR claims

Since the total amount of IBNR claims is a sum of independent variables with
Poisson distribution, Qd, the distribution of total amount of IBNR claims, Q, is also
a Poisson variable with mean equal to the sum of average of variables Qd. So, its
confidence interval is directly calculated by Poisson percentiles with average and
variance equal to the total amount of IBNR claims estimated. The amount of IBNR
claims per reporting period is also Poisson distributed with mean equal to the sum
of Poisson variables means that compose it. The distribution for this amount, per
reporting period, is important in the evaluation of the confidence interval obtained
for each notice period that was excluded from the sample to assess the quality of
model prediction. Demonstrations about amount of distribution, per notice period,
can be found in Souza (2013).

3 Measures to evaluate the quality of forecasts

To evaluate the quality of the forecasts, the measures: MAE(Mean Absolute Error),
MAPE (Mean Absolute Percentage Error) e RMSE (Root Mean Squared Error) will
be used.Let n be the last observable reporting period in the sample used for the
application of the methods and An+h the quantity of reported claims on the period
n + h from the maximum occurrence and maximum delay of report n. From
the run-off triangle we can obtain estimates of these quantities of claims until
n − 1 reporting periods after n. Keeping these conditions, however maintaining a
reasonable mass of data for adjusting the methods tested here, the last H reporting
periods will be removed from the data that will be used to apply methods in order
to forecast and evaluate the quality of forecasts of these periods. Therefore, for an
horizon h = 1, . . . , H with H = 1, . . . , n − 1 we have:

MAE =
1
H

H

∑
h=1

| An+h − Ân+h | (19)

MAPE =
1
H

H

∑
h=1

|
An+h − Ân+h

An+h
| ×100 (20)
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RMSE =

√√√√ 1
H

H

∑
h=1

(An+h − Ân+h)2 (21)

where An+h = ∑
n
t=h+1 Qt,n−t+1+h and Ân+h = ∑

n
t=h+1 Q̂t,n−t+1+h.

Among them, the measure MAE is considered as the most relevant because
it exhibits the same scale of the original data.

4 Application

4.1 Data

For a case study we use the diary data of quantity of DPVAT insurance claims
occurred in a window of 11 years of occurrence and notices, years 2001 to 2011.
The table 1 contains the average reporting delays(by day) of claims observed in
each occurrence year in the sample. Besides this information it is also presented
the maximum observable delay and an average of the total of claims occurred in
each day of the sample of claims reported until dec/2011, by year of occurrence.

Table 1: Descriptive Statistics
Occurrence Year Average Delay Maximum Delay Average Quantity

2001 176,5 4.016 90,1
2002 176,3 3.651 95,8
2003 194,1 3.286 91,0
2004 224,0 2.921 93,4
2005 190,9 2.555 97,1
2006 173,1 2.190 96,6
2007 166,6 1.825 103,8
2008 133,2 1.460 106,0
2009 116,6 1.094 104,1
2010 96,4 729 113,0
2011 59,3 364 89,4

The distance between the maximum observable delays and the average
observable delays is significantly large in all years. However, until the year of 2007
the average observable delay does not seem to be much affected by the reduction
of observability of the delays. Although, from the occurrence year 2008 to the last
occurrence year, the average delay is far from any average delays of previous years,
reaching an average delay of almost 60 days. This average around 60 days is not
reasonable. The delay distributions of recent occurrence periods are so affected by
the non-observability of long delays and to complete this information is a task that
should be considered by any way in the methods and/or models used.
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4.2 Delay distribution and frequency of claims

In the figure 2 the histograms show the distribution of observed delays in 9 days
of the sample. These 9 days are well distributed among all of the occurrence days
of 11 observed years (4.017 days). These empirical distributions are truncated in
the right side because only claims reported until the last date can be observed.
Thus, the older the day of occurrence, the lower the truncation of the distribution
of delays. From the selection of these days we can analyze since a more complete
empirical delay distribution (the first observed occurrence day) to an incomplete.
Among the presented histograms, the most recent occurrence day, with the most
incomplete distribution, is the day 3569(10/09/2010), who can present delays until
448 days of delay. The table 2 shows an identification of the selected days(y):

Table 2: Selected occurrence days(y)
Day(y) Date of Occurrence

1 01/01/2001
447 03/23/2002
893 06/12/2003
1339 08/31/2004
1785 11/20/2005
2231 02/09/2007
2677 04/30/2008
3123 07/20/2009
3569 10/09/2010

Figure 2: Histogram of delays observed in 9 selected days

We can observe a similarity between these distributions and the exponential
distribution, however the missing data by the right. Since for recent occurrence
days only short delays are observable, the last graph does not seem so similar to
an exponential distribution. Another distribution that could be used is log-normal
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function which could reach the less frequency of delays on the left of the modal
one shown in the histograms of the days y = 1339 and y = 3123.

First, it was adjusted a truncated exponential distribution for the delay data
using the methodology proposed in Weissner (1978). The same methodology was
used for the first fit of a mixture of exponential distributions. The parameter λ

for each occurrence day t was estimated using the data until 364 occurrence days
before t. Thus, the sliding window of data utilized for this estimation has length
equal 365 days.

The figure 3 shows the graphs of the accumulated exponential distribution
adjusted to the delay data of the 9 days selected versus accumulated curves of
observed delays.

Figure 3: Exponential curves adjusted - 9 selected days
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We can see that fitted exponential curves are close of the empirical curves and
there is a strong development of the reports that the fitted curves cannot reach. At
the same time, we have a development of long delays that could not be reached
if the mean of the adjusted exponential was inferior. This is why we adjust to the
delays the curve formed by a mixture of two exponential distributions. We can
interpret this distribution as if there are two groups of claimants of this insurance:
one that, in general, quickly reports the claim, soon after occurrence, and another
group that takes a long time to report the claim, being this group, a group with
rare reports with short delays. Follows in the figure 4 the graphics with curves of
the fitted mixture of exponential and empirical curves.

We can notice that in these latest curves it was possible to reach the initial strong
development shown by empirical curves and by the adjusted parameters values
we can note the possibility of include in the model the two groups of claimants
mentioned above, inclusive the percentage of participation of each one.

The graphs 5, 6, 8 and 10 show the expected values of delays in each day of
occurrence present on the data base.

To evaluate the effect of data truncation on the estimates of delay distribution
parameter, the model was fitted eliminating until the last three years of reporting
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Figure 4: Mixture of exponential Curves adjusted - 9 selected days
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of available data. The figures 5 and 6 show the expected delays given the adjusted
delay distribution per occurrence day as a simple exponential and a mixture of
exponential.

Figure 5: Expected delays - Exponential (Method proposed by Weissner)
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We can see that in the end of each curve there is a constant value repeated. This
is due to the treatment explained in the section 2.4. Each group of data (occurred
and reported claims until one, two or three periods before the last period in the
complete sample or all of observable claims) used for different adjustments has the
estimates of distribution parameters kept constant from different days. In the case
of fit mixture distribution of exponential, each λ involved in distribution delays is
fixed from a different point. The figure 6 shows the expected delays obtained from
a combination of two exponential that composes delay distributions. However, the
estimated λ of each component in the mixture of exponential are very distinct, one
of them generates an expected delay around 600 days while another one generates
an expected delay around 80 days. In the estimation process, the λ regarding the
distribution with higher expected delay is the first to be fixed, because he generates
expected values that beats half of deadline of data truncation faster than in the
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Figure 6: Expected delays - Mixture of exponential (Method proposed by
Weissner)
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other distribution. In this moment the α is also fixed. As the estimation of the λ

of another distribution was not fixed yet, the graph of expected delay calculated
from all parameters of the delay distribution is not constant from this fixation point
until the other λ becomes constant too. It is possible to observe that, although
we consider in the likelihood the data truncation adjusting to them a conditional
distribution, the estimated parameters still varies strongly in accordance with
truncation.

In the Figure 7 we can see the evolution of the estimates of the parameter α. This
parameter combines two exponential distributions and it is about 85% in the first
occurrence days studied. During the period between 2002(occurrence day around
500) and 2008 (occurrence day around 2500), the estimated value of α is smaller,
indicating a growth of the frequency of long delays in this period, after it, he starts
to rise reaching 80%.

Figure 7: Parameter alpha - Delays as a mixture of exponential (Method proposed
by Weissner)
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From the adjusted delays curves, we can get a first estimate of the expected
total quantity of claims occurred in each observable day as Weissner (1978)
proposed. From this quantity we can obtain the estimate of IBNR quantity.
The likelihood proposed by Weissner is not complete, because he ignores that
the number of observed claims until the last date in the data is also a random
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variable. The proposed model in this document considers that this amount have
binomial distribution with parameters that depends on the parameters of the
delay distribution, on the maximum observable delay and on the parameter of
the distribution of the total number of claims occurred in each day. The figures
8 and 9 shows the graphs of the new expected values of delays and the graph of
parameter γ relating to the proposed model, estimating them, the λ and γ by the
application of EM algorithm.

Figure 8: Expected delays - Exponential distribution (Method proposed in this
article)
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We observe that the graph of expected delays obtained from the estimation of
λ (figure 10) is very similar to the one obtained independently of the adjust for
estimation of parameter γ. Even in this model, the bias caused by truncation still
occurs: as more truncate are the delays shorter is the estimated average delay.

Figure 9: Parameter gamma - Exponential Delays (Method proposed in this article)
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The exponential curve fitted jointly with the distribution of the number of
occurred claims cannot reach the fast development of delay’s curve too, as said in
the beginning of this section. Therefore, a joint estimation considering the delay’s
distribution as a mixture of exponential using the showed likelihood function
optimized from a search nonlinear algorithm implemented in Matlab was also
realized. The figure 10 presents the expected delays of the adjusted curves for
each occurrence day. The figure 10 refers to curves adjusted to claims reported
until the end of the years 2008 to 2011, as legend identify.
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Figure 10: Expected values of delays - Mixture of exponential(Method proposed in
this article) - Samples with and without the data of last observed reporting years
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The expected values of delays showed in the figure 10 do not show the bias of
truncation showed in the figure 8. This occurs due the application of rule described
in 2.4. When data of claims with reporting date until dec/2008 is used, the estimate
of parameter λ of mixture of exponential which represents longer delays and the
estimate of the parameter α begins to be repeated around the occurrence day 1400.

Using data of reported claims reported until dec/2009 this repetition of the last
estimate starts from the occurrence day 1800, after the falling of the expectancy of
the adjusted distribution to the first exponential of the mixture of exponential. The
same occurs when we use data with claims reported until dec/2010, the repetition
of parameters estimates occurs after the falling of the expectancy of the adjusted
distributions. Only with data of claims reported until dec/2011 it is possible to
generate estimates of parameter that give us a increasing expected delay until the
estimates start to be repeated.

Figure 11: Parameter gamma - Delays as mixture of exponential (Method proposed
in this article)
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From the graphs 9 and 11 we observe that the joint parameters estimation of
the distributions incorporated in the model influences the parameters estimates
obtained. The estimates of the parameter of total amount of claims distribution,
γ, vary according to the specification and estimation of parameter of the delay
distribution. These estimates of γ seem to be less sensitive to truncation when
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the estimation is made jointly with delay distribution parameters as a mixture
of exponential. We also see that both graphs exhibit similar movements for the
estimate of the parameter γ during the periods of occurrence studied. Around the
period of occurrence 1000(sep/2003) both lines starts an upward trend of occurred
amount of claims in this insurance, already well publicized in the national media.

The adjusted parameters utilizing data of eleven observed years except the last
month of report (data from jan/2001 to nov/2011) until those obtained with the use
of data without the last three months of report (data from jan/2001 to sep/2011)
have a development very similar to the development of the parameters obtained
by the adjusting by the complete data, with the eleven observed years.

With the estimate of parameters, the estimates of total claims amount per
occurrence were calculated. The figures 12 and 13 show the relation between the
amount of observed claims kd, the total amount of claims estimated by the model
which only considers the distribution of delays as a mixture of exponential (with
no association with any distribution of another variables of the process) and the
model proposed in this work who also models the total amount of occurred claims
per period, Nd, in accordance with Poisson distribution.

Figure 12: Ultimate x kd x γ - Mixture of exponential (Method proposed by
Weissner)
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Figure 13: Ultimate x kd x γ - Mixture of exponential(Method proposed in this
article)
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The figures 12 and 13 show the amount of observed claims and the total amount
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estimated for each occurrence day starting from the day 2500(nov/2007) by the
last day in the base of data, 4017(dec/2011). Based on them, we can observe
a problem in the total amount of claims estimated by the method proposed by
Weissner (blue portion at the right extremity on the graph). Since the estimate of
this amount by this method, is made by the application of a factor calculated from
the delays distribution on the observed amount of claims kd, the total amount
of claims estimated is influenced by the abrupt fall of the number of observed
reports in the last occurrence periods, which is not reasonable, because there is no
justification for a so big drop in the total number of occurred claims estimated in a
so short range of time.

The method proposed in this article is robust in concerning of this drop because
it has a percentage of total amount of claims estimated by the distribution of Nd

as an estimative of the total quantity of claims occurred in d. We can observe in
the figure 13 that in the last periods the level of total estimated amount does not
suffer the drop observed in figure 12. The γ obtained is also reasonable regarding
to total historical amount, capturing the growing of expected amount Nd even
in the last periods of occurrence. For evaluate the quality of model prediction,
the amount of IBNR reported in the periods excluded of the sample utilized to
adjust the model was estimated too. The estimated amount used for comparison
with the predictions made by the proposed models uses triangles without tail
adjustment. Hence, the tail effect was eliminated of the amount predicted by
Micro-data method covered here.

4.3 Forecast errors and estimates of the quantity of IBNR claims

To forecast the last 1, 2 and 3 reporting years out of sample of model fitting :

Table 3: Error Measures of Extended B-F - annual forecasts
Extended B-F Methods Until Dec/2008 Until Dec/2009 Until Dec/2010 IBNR

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE 2011
Ultimate LD(Pan Devel.) 24% 866 946 25% 1,872 2,150 8% 1,089 1,089 24,984
Ultimate Pan(Pan Devel.) 23% 852 932 26% 1,904 2,183 8% 1,197 1,197 25,131
Ultimate Pan*(Pan Devel.) 23% 852 932 26% 1,904 2,183 8% 1,197 1,197 25,131
Ultimate LD(CL Devel.) 25% 930 1,021 26% 1,936 2,232 9% 1,237 1,237 25,164
Ultimate Pan(CL Devel.) 24% 898 984 26% 1,946 2,240 9% 1,303 1,303 25,243
Ultimate Pan*(CL Devel.) 25% 920 1,011 27% 1,975 2,274 9% 1,359 1,359 25,342
Ultimate Mack(Mack Devel.) 26% 978 1,079 27% 2,013 2,324 9% 1,367 1,367 25,333
Ultimate Pan(AD Devel.) 31% 1,093 1,179 31% 2,205 2,488 11% 1,609 1,609 26,264
Ultimate LD(AD Devel.) 32% 1,188 1,292 32% 2,292 2,595 12% 1,702 1,702 26,389
Ultimate Pan*(AD Devel.) 32% 1,190 1,296 33% 2,355 2,661 13% 1,857 1,857 26,630
Mixture of Exp.(Proposed) 43% 1,102 1,142 24% 1,160 1,160 14% 2,082 2,082 19,856
Mixture of Exp.(Weissner) 46% 1,229 1,259 22% 856 924 20% 2,878 2,878 19,721
Ultimate CC(Pan Devel.) 35% 1,522 1,771 42% 3,120 3,615 22% 3,248 3,248 28,015
Ultimate AD(Pan Devel.) 36% 1,551 1,809 42% 3,161 3,662 23% 3,310 3,310 28,104
Ultimate CC(CL Devel.) 37% 1,577 1,837 42% 3,173 3,685 23% 3,375 3,375 28,151
Ultimate AD(CL Devel.) 37% 1,601 1,868 43% 3,209 3,727 24% 3,433 3,433 28,231
Ultimate CC(AD Devel.) 44% 1,812 2,072 48% 3,492 3,996 26% 3,767 3,767 29,350
Ultimate AD(AD Devel.) 44% 1,812 2,072 48% 3,492 3,996 26% 3,767 3,767 29,350
Exponential(Proposed) 75% 2,853 3,158 63% 3,355 3,377 40% 5,832 5,832 9,781
Exponential(Weissner) 75% 2,844 3,145 66% 3,627 3,685 44% 6,389 6,389 9,057

In the table 3 the columns with header ’Until Dec/2008’ present the measures
of errors of predictions of amount of IBNR claims to be reported until dec/2009,
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dec/2010 and dec/2011 using observable data until dec/2008, in other words,
until three steps ahead, without effect of the tail for claims occurred in 2001 to
be comparable to the triangle methods used here. The columns with header ’Until
Dec/2010’ show the measures of errors of predictions of the amount of claims to
be reported until dec/2010 and until dec/2011 and the columns with header ’Until
Dec/2009’ presents the measures of errors for predictions of amount of claims to
be reported until dec/2011, so one step forward the ”cut” of data base.

We can note that the model with exponential distribution is not appropriate to
the data studied here. His performance is the worst among the presented methods.
The best predictions among the methods applied to micro-data are performed by
the model proposed in this work with distribution of delays following a mixture of
exponential. The model proposed by Weissner with delays distribution according
to a mixture of exponential has measurements of errors very close to the model
proposed in this article. However, analyzing the figure 14, where the observed
amount of claims in 2011 given the observations by dec/2010 and the predictions
of both models are represented, we see that the predictions obtained by Weissner
are not consistent with the amount observed. In the model of Weissner the amount
of IBNR is a percentage of the observed amount in each occurrence period, as the
observed amount decreases in the last occurrence periods, the predictions of the
IBNR amount also decreases, which is not consistent with the reality. We see that
the number of IBNR claims reported during the period of interest grow extremely
in the recent occurrence periods, behavior that is captured by the proposed model
in this article.

Figure 14: Observed Quantities x Estimates from Mixture of Exp.(Proposed) x
Mixture of Exp.(Weissner)

The micro-data method with delays distribution as a mixture of exponential
is not the one that presents has smallest errors, but they are competitive with
traditional methods. There are methods that use traditional data format that
presents prediction errors larger than the micro-data methods with mixture of
exponential presented here, as Cape Cod method with the use of Chain Ladder
development factors.
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Table 4: Error Measures of Extended B-F - monthly forecasts
Extended B-F Methods Until Sep/2011 Until Oct/2011 Until Nov/2011 IBNR

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE 2011
Mixture of Exp. (Proposed) 9% 140 191 8% 238 286 4% 129 129 19,856
Exponential(Proposed) 6% 133 141 11% 343 407 9% 307 307 9,781
Mixture of Exp.(Weissner) 9% 143 185 8% 277 381 10% 324 324 19,721
Ultimate LD(Pan Devel.) 27% 596 612 17% 462 462 12% 380 380 24,013
Exponential(Weissner) 6% 135 142 13% 408 475 13% 427 427 9,057
Ultimate Pan(Pan Devel.) 23% 510 526 19% 506 507 14% 467 467 24,033
Ultimate Pan*(Pan Devel.) 23% 510 526 19% 506 507 14% 467 467 24,033
Ultimate Pan(AD Devel.) 26% 562 574 21% 559 560 16% 512 512 23,928
Ultimate Pan(CL Devel.) 26% 559 573 21% 560 560 16% 515 515 23,019
Ultimate LD(CL Devel.) 35% 770 791 24% 651 651 17% 563 563 23,381
Ultimate Mack(Mack Devel.) 36% 783 803 25% 665 665 18% 580 580 23,506
Ultimate LD(AD Devel.) 36% 790 810 25% 673 673 18% 588 588 24,453
Ultimate AD(Pan Devel.) 32% 693 709 25% 667 668 26% 853 853 28,022
Ultimate CC(Pan Devel.) 32% 693 709 25% 668 669 26% 853 853 28,025
Ultimate CC(CL Devel.) 34% 740 754 27% 714 715 27% 887 887 26,913
Ultimate CC(AD Devel.) 35% 752 764 27% 724 725 28% 894 894 27,981
Ultimate AD(AD Devel.) 35% 752 764 27% 724 725 28% 894 894 27,981
Ultimate AD(CL Devel.) 35% 748 761 27% 723 724 28% 897 897 26,982
Ultimate Pan*(CL Devel.) 39% 866 892 34% 913 918 28% 907 907 25,421
Ultimate Pan*(AD Devel.) 40% 885 910 35% 936 941 29% 939 939 26,717

To forecast the last 1, 2 and 3 reporting months out of sample of model fitting :

In the tables 3 and 4 the columns with header ’Until Sep/2011’ present the
measures of errors of predictions of amount of IBNR claims to be reported
until oct/2011, until nov/2011 and until dec/2011 using the observed data until
sep/2011, in other words, until three steps ahead, without effect of the tail to
be comparable to the triangle methods used here. The remaining columns are
similar to those, with 2-step or a step forward, as was explained to the tables
of measurements for annual predictions. The micro-data methods present a
performance far superior to most traditional methods, thus showing to be more
suitable than traditional forecasts for shorter periods of development in this
case study. Methods of micro-data are robust with respect to variability in data
found at this level, while traditional methods are sensitive to short periods of
use. The method proposed in this article showed the best results, with the lower
MAPE among all other forecast methods until 2 steps ahead. The MAPE that are
associate to forecast until 3 steps ahead of this model is low and very close to
others micro-data methods’ MAPE.

4.4 Confidence intervals obtained in this proposed approach

The tables 5 and 6 contains the observed quantities and the confidence interval of
90% for variables Aτ , claims amount reported in year τ, whose estimates generated
forecast errors that were presented in the tables 3 and 4.

In table 5 we see that none of the confidence interval contains the observed
amount in this period of report. This could point us that the Poisson distribution,
assigned to these variables, maybe, can be replaced for another one with higher
variability compared to its average. However, the Poisson parameter may have
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Table 5: CI(90%) x Observed quantity by out of sample reporting year
Last year in the sample of model fitting

Forecast horizon 2008 2009 2010
L.Bound Obs U.Bound L.Bound Obs U.Bound L.Bound Obs U.Bound

2009 12,384 13,460 12,824
2010 4,120 2,722 4,376 12,844 11,926 13,292
2011 2,236 1,406 2,426 4,160 3,109 4,417 12,191 14,491 12,628

been underestimated. Which could be resolved with the best adjust for the delay
distributions through treatment of truncation bias or even with the replacement of
the distribution formed by a mixture of exponential exchanged for another one.

Table 6: CI(90%) x Observed quantity per month of reporting out of the sample
Last month in the sample of model fitting

Forecast horizon Sep/2011 Oct/2011 Nov/2011
L.Bound Obs U.Bound L.Bound Obs U.Bound L.Bound Obs U.Bound

Oct/2011 3,081 3,195 3,266
Nov/2011 2,177 2,179 2,333 2,892 3,378 3,072
Dec/2011 1,683 1,430 1,821 2,183 2,181 2,340 3,012 3,232 3,195

In table 6 some confidence intervals contains the observed amount of the
reported periods presented. The results in tables 5 and 6 would indicate the need
for adjustments in the used model. On the other hand, the assessment of the
confidence intervals obtained for this variable is not robust, because we have few
available observations for this variable. To evaluate more values of this variable
using the available data we would have to eliminate more data of the sample used
for the model adjustment, but this could weaken the adjust of model.

According the last column in the table 3 the total estimated amounts of IBNR
claims by traditional methods are between 24.000 and 29.000 claims. The methods
with minor errors generate smaller prediction of total quantities.

In table 4 we see that using monthly periods to calculate IBNR through the
traditional methods instead of using annual periods generates new estimates to
total amount of IBNR, slightly different to those obtained per annual data, in
general, lower. The method proposed in this work generates an estimation of the
total amount of IBNR of 19.856 claims, is a lower forecast, although very close of
the predictions of the traditional methods that showed smaller errors.

The confidence interval of 90% of total IBNR, in according to the proposed
method in this work is [19.625; 20.088].

5 Conclusions:

This paper has presented a micro-data modeling approach to the problem of
forecasting the quantity of IBNR claims. The model describes the conjoint
distribution of the principal variables: the number of occurred claims, the number
of reported claims and time to report. Different distributions can be assigned both
to the number of occurred claims and the time to report. In the present paper,
we have explored two distributions for the time to report: a simple exponential

21



distribution and a mixture of two exponential distributions. We developed a
maximum likelihood estimator for both cases. For the first one, we could write an
EM algorithm. For the second case, we construct a non-linear search procedure.
The approach was tested in a forecasting exercise using individual data from
DPVAT claims.

Although the use of micro-data based models did not showed a clear superior
forecasting performance, they show a promising analytic potential since they
allows the construction of confidence intervals for the forecasting very naturally,
they can be used with different assumptions for the distributions of the principal
variables and they can be extended to accept external explanatory variables. The
case study presented consistent results with respect of information published in
the media about this insurance.

22



References

Al-Athari, M. M. (2008). Estimation of the mean of truncated exponential
distribution. Journal of Mathematics and Statistics, 4(4):284–288.

Antonio, K. and Plat, R. (2012). Micro-level stochastic loss reserving for general
insurance.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series
B Methodological, 39(1):1–38.

Parodi, B. P. (2013). Triangle-free reserving : a non-traditional framework for
estimating reserves and reserve uncertainty.

Schmidt, K. D. and Zocher, M. (2008). The Bornhuetter-Ferguson Principle.
Variance Journal, 2(1):85–110.

Souza, L. (2013). Comparação de métodos de micro-dados e de triângulo run-off
para previsão da quantidade ibnr. url: www.maxwell.lambda.ele.puc-rio.br.

Taylor, G., McGuire, G., and Greenfield, A. (2003). Loss reserving: past, present
and future. ASTIN Colloquium, (109).

Weissner, E. W. (1978). Estimation of the distribution of report lags by the method
of maximum likelihood. PCAS LXV.

23


	Introduction
	Methodology
	Formalization
	Exponential delay model with estimation by EM algorithm
	 Model of delays as mixture of exponential distributions
	Update of parameter estimates X data truncation
	Quantity of IBNR claims estimator
	Distribution of the amount of IBNR claims

	Measures to evaluate the quality of forecasts
	Application
	Data
	Delay distribution and frequency of claims
	Forecast errors and estimates of the quantity of IBNR claims
	Confidence intervals obtained in this proposed approach

	Conclusions:

